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1. INTRODUCTION AND BACKGROUND

1.1 Preliminary Structural Design

The design of an aerospace vehicle structure is an inherently complex task, with
much of the difficulty resulting from the multidisciplinary nature of the problem. Simple
analytical or numerical methods and experimentation were used in the past to perform trade
studies and provide the basis for design decisions. With the continued development of
finite element methods (FEM) and the associated improvements in computing capabilities,
designers have gained new and powerful tools to facilitate and accelerate the design
process.

"The development of the improved structural analysis methods has also stimulated
the development of various optimization methods and their application to the structural
design problem. These techniques, generically referred to as multidisciplinary design
optimization (MDO), now allow for the integration of diverse disciplines, considered
simultaneously, into the design process. Typically, these optimization methods, which are
based upon a variety of numerical techniques, are integrated with finite element analysis
computer software, opening a new dimension of utility for structural design.
Unfortunately, these programs are typically limited to the design of a fixed geometry
structural model, where the loads, flight conditions, materials, etc., have been previously
specified. Ashley1 states that:

Optimization has a great potential as a sound way of choosing among alternate
concepts, all the way from overall structural configurations to specific materials of
construction. Unfortunately, the design of a structure may prove difficult because... the
topology and layout of members, boundaries of the volume to be occupied, the choice
of material systems, the modes of failure, and the loading conditions likely to be most
significant are all matters which are usually addressed as part of the formulation rather
than the solution.

The research documented in this report addresses these concerns by exploring a
design methodology for effective utilization of MDO design tools at the conceptual and
preliminary design stages. These terms are used somewhat interchangeably throughout this
report but are intended to imply that phase in the design process where neither the structural
configuration nor the specific materials for each of the components have been determined.
The methodology involves using the advanced analysis and design capabilities of MDO to
provide an analytic definition of the design space for candidate structural concepts. From
the design space representation, decisions about structural configuration, material systems,
etc., can be made. The ultimate goal of the design process is arriving at a "preliminary"
design which satisfies all of the requirements placed upon the design in the most efficient
manner. This design would then be subjected to more detailed analysis and component
sizing.

Most current analysis software systems have been created in order to quantify the
characteristics of a given configuration. In the case of structural analysis, the ability to
accurately predict performance is based upon accurate modeling of the structure, its
environment and their interaction. In order to perform "analysis" one needs a quantifiable
set of parameters which define the system. Design is the process whereby that quantifiable
set of parameters is selected and defined. The relationship between analysis and design can
be quite complex and it is inherently "iterative."

Most multidisciplinary interactions are not modeled at the early stages of design,
where an understanding of the impact of their interactions could lead to substantialimprovements in the final designs (or at the very least avoid problems). As an example,
consider the wing box of an aircraft. Increasing the wing thickness (t/c) will improve
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strength and stiffness characteristics, possibly allowing for the creation of a lighter
structure, but this increase in thickness may increase aerodynamic drag. Since both weight
and drag relate to range which is oftefi considered as an important design goal,
understanding the relative merit of each effect is important. It is important to realize that
modification of thickness will also affect a wing's static aeroelastic deformation, fuel
carrying capabilities, vibration characteristics, and numerous other characteristics of the
aircraft. Determining how wing thickness relates to each of these concerns is a critical
issue in design. This simple example implies that not only does the preliminary structural
designer require accurate information on a particular design but also needs information
related to the importance of certain parameters and their impact on the design. These types
of studies, referred to as parametric trade studies, are often conducted in order to provide
quantitative insight into the system's "design space." The cGncepts of the design space and
quantifying the design space are central to this research and provided the focus for this
project.

It is common when dealing with detailed structural design using finite element
methods to deal with highly refined models, with a large number of elements and degrees
of freedom. These models are typically able to predict, with good accuracy, the stresses,
deformation and dynamic characteristics of the actual structure. If the designer is concerned
with a simple stress analysis, results may be easily post-processed into convenient color,
shaded contour plots for interpretation. As the analysis complexity increases, involving
dynamic analyses, thermal, or aeroelastic phenomena, the amount of data to be interpreted
continues to grow. Design, in contrast to analysis, introduces an entirely new dimension to
this interpretation difficulty. Specification of appropriate design variables and design
constraints must be made. Given a finite element model with fixed internal components,
spatial geometry and loading, an MDO procedure will provide a single "point" in the design
space. This "design" is often achieved by the selection of the "size" of all or a selected
group of the finite elements which were used to idealize the structure. Weight or cost are
often considered as the merit functions and the resulting design often referred to as
"optimal." Such a point design may provide useful design information, but as mentioned
previously this is often not the most useful information for the conceptual or preliminary
designer.

Considering that even a relatively simple FEM/MDO analysis and design can
produce hundreds of pages of printer output, a means to extract the most significant design
information becomes important for efficiency. One possibility for the convenient
manipulation, both storage and processing, of design information comes from advances in
the area of artificial intelligence. Models based on human brain structure, known as
artificial "neural networks" provide an efficient means for storage of quantitative
information. These models can be used to interpolate or extrapolate from the known
information. They can also be used to provide an effective "mapping" of a structure's
design space. It would be advantageous to exploit these neural network characteristics in
the preliminary structural design environment.

Once a design space mapping has been obtained, variations in the structural
characteristics to perturbations of the design variables can be determined. Values for the
design variables may also be determined that will improve the desirable design
characteristics. With this perspective the problem at hand can be considered as being
composed of a sequence of steps. The first is the determination of quantitative information
or knowledge about a specific design, this can be the result of analysis or even experiment.
The second is the modeling of the design space, in the current work using the neural
network. The third step would be the use of the quantitative model, i.e. the neural network,
to provide the information necessary to select the final design concept.

The goal would be to develop a design space representation which provides an
effective mapping of the hypersurfaces of the feasible design space (where the feasible
design space is an n-dimensional "volume"). The dimension of the hyperspace relates to the
number of design variables, and the hypersurfaces represent the boundaries between the
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feasible and infeasible design space. The selection of the design variables is an important
aspect of this problem. In the case of preliminary structural design, the design variables are
not the "element gages" but are instead the basic structural arrangement, the location of the
primary load carrying components and the materials to be used in each component.

In the research documented in this report the basic quantitative information about
specific designs has been developed using finite element based, MDO procedures, therefore
each individual design represents a "best" design for a given structural arrangement and set
of materials - for a limited set of "constraints." When this information is used to develop
the design space representation, the design space is then based on "optimal" designs
oblained from appropriate MDO procedures. Once trained, the neural networks may be
incorporated into numerical optimization procedures so that improved designs can be
obtained from the design space representation. This approach is particularly useful when
the number of design variables is large, and the means to visualize and interpret the design
variable interactions are unavailable. As will be shown, this design approach allows for the
determination of designs that would otherwise be unobtainable from current design
procedures.

It was pointed out earlier that a hyperspace can be imagined for which each point in
that space represents a possible design. Also, imagine that measures of performance as well
as constraints would constitute hypersurfaces that divide the design space into feasible and
infeasible design regions. These concepts can be illustrated by the use of a simple example.
In this case the design space is "two-dimensional" so that it can be easily represented in a
graphical fashion. A "preliminary" structural design problem representative of the
applications to be presented in this report could involve the design of a simple cantilevered
five bar truss, shown in Figure 1. Consider the case where it is desired to define the design
space for the family of least weight designs as a function of the location of node 2.
Understanding how design weight varies as a function of this variable could lead to the
determination of a node 2 location that provides the truss configuration that both satisfies all
the applicable design constraints and also represents a "least weight" design.

Figure 2 illustrates the variation in truss weight as a function of node 2 location 2.
This plot was generated from graphically contouring the design space defined by 1681
fully-stressed designs. These designs were achieved by incrementing each of the design
variables, the node 2 coordinates, through a range of allowable values. This resulted in an
even distribution of designs through the two-dimensional design space. Again, the
contours shown represented the fully-stressed design weight for the corresponding truss
geometry. Similar contours could be generated for other structural characteristics, such as
natural frequency, or nodal displacement The relative simplicity of the structure allowed
for the calculation of the least weight for each design in a reasonable amount of time. The
development of 1681 individual finite element models and the subsequent "optimization" of
each would be prohibitive for a more realistic structural design problem. Throughout this
research project, relatively simple truss structures, and their "two-dimensional" design
spaces have been used to help provide visual insight into the problems being considered.

From the contour plot, one can see that the lowest weight design can be achieved by
situating the node 2 location in the lower left comer of the design space (specifically, at
X2=7.0, Y2=0.0). This determination can be made from a simple visual inspection (your
own highly developed neural network, pattern processing) of the contour plot, but what
happens when the dimension of the design space increases beyond our ability to visualize
it? In what form can the design information be represented, and once represented, how can
determinations about the structural configuration to best meet a set of design objectives be
made?

A final complicating issue deals with design variables that are not continuous valued
(as they are in the previous example) but, rather, discrete valued. This could be represented
by having multiple materials under consideration for each of the five rods. Consider again
the five bar truss, this time with two material possibilities for each of the five rods. This
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represents 32 possible material combinations. The materials under consideration are shown
in Table 1. Figure 3 shows the results for the discrete design space representation. The 32
designs were obtained from using the baseline geometry of the five bar truss and the
loading shown in Figure 1. These designs were determined using the Automated Structural
Optimization System (ASTROS) 3 which employs math programming methods to develop
the least weight structures subject to various constraint conditions. ASTROS was used as
the source of design information for many of the design studies conducted during this
research and is discussed in some detail later in the report.

The horizontal plane of the Figure 3 represents the material composition of each of
the rods. One of the horizontal axes represent the eight unique material combinations for
rods 1, 2, and 3, respectively. The other horizontal axis indicates the composition of rods 4
and 5. One can see that the trend is towards a reduction in weight as the number of titanium
rods is increased. The least weight design is not solely composed of Ti, however. A
material assignment vector (2,2,1,2,1) for the five rods yielded the least weight design.
The final design areas for the five rods was (A) =( 0.04, 0.013, 0.01, 0.037, , 0.0 1) in 2.
Two of the elements were at a minimum gage constraint of 0.01 in2 and this is the reason
why an all Ti design is not the least weight design. This particular example helps illustrate
the complexity associated with a "combinatorial" optimization problem which is not
characteristic of the continuous design space represented in the first example presented
above.

The two previous examples have presented representations of the design space for
two specific design problems. The tabular data which was used to represent the design
space in a graphical fashion could also be used to provide the information necessary to
"train" a neural network. The neural network can then form an approximate representation
to the n-dimensional design space (discrete or continuous) under consideration. The
representation is approximate because it is based on a set of "point designs," from which
the global representation is obtained. The neural network allows for an interpolation or
extrapolation from the existing design information to obtain this complete n-dimensional
design space representation, much as the contour plotting procedure does a fit to the points
of data from which it is composed. The neural network representation then provides an
extremely efficient, quantitative means to investigate the design space characteristics of the
structural design problem under consideration.

1.2 Background: Multidisciplinary Analysis and Artificial Neural Networks

The following is intended to provide a basis of understanding for some of the
major concepts and techniques described in more detail later in the report. A brief
description of multidisciplinary design optimization (MDO), fully-stressed design and
neural networks for use in design space synthesis is provided. Discussion regarding
previous research in the area of neural network applications to structural design is also
outlined.

In determining a structural design, a single configuration (materials, structural
geometry, component sizing) can be selected, based on some established criteria, from
those candidate configurations that are acceptable under the appropriate constraints. To
obtain this structural configuration, the designer uses his ability to predict the structural
behavior of the model under a given load or loads and his previous experience with similar
design problems. At best, this approach can only provide clues to the best solution, not its
identity.

Given a complex structure which can define an equally complex design space, what
approaches can be taken to extract the maximum amount of design information? Also, since
the conceptual or preliminary design stages are inherently where major inter-disciplinary
trade-offs are made, how can the major trends of interest be extracted from the wealth of
information obtained from the various designs? Simplified finite element models of
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Table 1. Material Properties for the Five Bar Truss

Tensile Compressive
Material Modulus Density Allowable Allowable(psi) (lbin3 ) (psi) (psi)

1) 7075-T6 10.5(106) .101 36.(103) 37.(103)

2)Titanium 17.0(106) .164 75.(103) 75.(103)
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Figure 3. Discrete Design Space for the Five Bar Truss - Material System Design
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structures have already been shown to be an effective means for investigating the behavior
of complex structures 4 . It is thus desired to formulate simple, yet representative, finite
element models of candidate structural concepts and investigate possible structural
configurations of interest. A representative model is defined here as one in which the major
macroscopic properties of a given structure can be accurately determined. Because these
simple finite element models are typically computationally efficient for analysis, numerous
models may be analyzed and the resulting design information may be combined to form a"mapping" of the structure's design space. This mapping will contain information such as
major characteristics and their variations as a function of the design variables (design
sensitivities). One of the major difficulties arises at this point; that is, for even a single,
simple finite element model there is a wealth of design information provided by a finite
element analysis. Given a set of possibly several hundred finite element analyses, the
amount of information may become too vast to be interpreted efficiently.

Work on artificial neural network models began more than 40 years ago, with the
development of detailed mathematical models by McCulloch and Pitts5 , Hebb6,
Rosenblatt7. Swift8 discusses in more detail aspects of the recent developments in neural
networks and provides additional references. This particular area has received considerable
recent interest and the number of papers, journals and books on the subject has increased
exponentially. For the research presented in this report, only one type of neural network
was employed; a feed-forward neural network that employs back-propagation training.
These networks can "learn" from a set of information and provide solutions when "new"
information is requested. A more detailed discussion of these networks is presented in
Section 4.

Feed-forward networks have a set of inputs that form the "input layer," and a set of
outputs which form the "output layer." When neural networks are used for design space
mapping, the design problem at hand defines the number of inputs to the neural network as
well as the number of outputs. The network inputs correspond to the design variables of
interest, while the network outputs represent the objective function(s) or constraint
quantities. Hidden layers (intermediate layers to the input and output layers) are required
for all but the simplest problems. The hidden layer geometry is a function of the design
space complexity to be mapped. Since the neural network representation is not unique,
many different hidden layer geometries will provide adequate design space representation.
Once a neural network configuration (i.e., number of neurons and connections) is selected,
the parameters which define the neuron characteristics must be determined. This is
accomplished using the training data or design "knowledge." The training data are sets of
information whose functional relationship one wishes to represent with the neural network.
This training data is in the form of a set of input/output vectors.

The current research builds upon previous efforts to apply neural networks to
structural analysis and design. Rehak, Thewalt, and Doo9 described the utility of neural
networks for computations in structural engineering, in particular dynamic structural
system identification problems. The case of a damped two-degree of freedom structural
system was considered. This model was subjected to a loading representative of an
earthquake response simulation. Training data for the neural network was obtained from a
second order ordinary differential equation that defined the behavior of the system. The
inputs to the network were acceleration, velocity, displacement, and force at time instant
"i." The network output was the expected acceleration at time "i+ 1." The network was able
to perform the dynamic system modeling successfully. The authors also described the
influence of the parameters used in training the network on learning effectiveness, and the
response to various input vector schemes. Simple feed-forward networks without hidden
layers were considered. A number of major conclusions were drawn from this paper, the
most significant being the promise that neural networks showed for a wide range of
difficult engineering problems.
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Hajela and Berke10 1 1 demonstrated the utility of neural networks as a substitute for
the finite element analysis procedure in an optimization analysis. This work involved
training a series of neural networks to represent the force-displacement relationship
developed from a static structural analysis. The trained neural network effectively replaced
the finite element analysis portion of a math-programming optimization procedure. As an
example, they consider a five bar truss with a fixed geometry. Random values for the
cross-sectional areas of the five rods were determined, and a static analysis of the truss was
performed. These rod areas and the resulting nodal displacements were used as training
data for a neural network. Stress values were calculated from these displacements. It was
determined that the neural network could effectively replace the finite element analysis
portion of an optimization procedure, where the design variables were the rod cross-
sectional areas. The effects that neural network geometry had on the force-displacement
representation accuracy and on the required network training times were investigated. Their
results showed the potential for further applications of neural networks to design.

Swift and Batill2 ,8.12 have used neural networks to map out the configurational and
material design spaces for a number of structural design problems. The work presented in
Reference 2 and 12 involved training a neural network using training data obtained from
finite element analysis where nodal locations and material properties were considered as the
design variables, respectively, rather than just element gages. The neural networks were
able to effectively represent the design information, and optimal configurations were
obtained to meet constraints on weight, displacement, and natural frequency for simple
trusses and a built-up wing-box model. The neural networks also displayed the ability to
isolate regions of the design space where improved designs were residing, resulting in
significantly improved final designs. Reference 8 presents a comprehensive development of
the background for many of the topics presented in this report.

Swift and Batill have also explored the utility of neural networks for damage
tolerant design 13, and have looked at a recursive learning procedure14 . The recursive
learning procedure is an attempt to address the minimization of training data generation for
effective design space representation. The generation of training data is typically the most
expensive part of the neural network procedure, since finite element methods and math-
programming procedures are used as the source of this information. These procedures are
computationally intensive, and require significant computer resources and time investment
to generate training data sets.

There is a growing interest in the use of neural networks for engineering design
applications. Carpenter and Barthelemy 15 have performed a comparison between the ability
of neural networks to represent information in contrast to common curvt-fitting techniques.
It was shown that the neural networks offer a more flexible means for the representation of
complex data sets that have variable input/output dimensions. Fu and Hajela 16 have
employed Hopfield networks for the minimization of distortion in truss structures.
Applications of neural networks to other aerospace problems have become too numerous to
list. One notable paper is that of Linse and Stengel17, who have used neural networks to
formulate a "smooth" aerodynamic model for use in adaptive nonlinear control strategies.

A number of conclusions can be drawn from the previous work utilizing neural
networks for engineering applications:

1. Neural networks provide a flexible means for performing calculations that are
difficult to formulate or are otherwise computationally costly, and

2. With the current shift towards implementing neural networks in hardware (rather
than in software) very significant improvements in the computational times required for
some types of computations can be expected.

The focus of the research presented in this report attempts to utilize the favorable
neural network characteristic--employing neural networks for the difficult task of
computing design information (specifically design space representations based on both
discrete and continuous design variables). Considering the continued development of
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neural network technology, the development of methods and procedures that allow for the
application of the neural network modeling of non-parametric design spaces may have
important future benefits.

1.3 Overview of the Current Research

The application of MDO procedures and neural networks to preliminary structural
design has been applied to two categories of design problems, each relating to a different
design variable (and design space) "character." The first is that of designs involving
continuous design variables (continuous in that the variables may have any value between
an upper and lower bound constraint). The second category considers discrete design
variables. These discrete design variables represent such things as material type (assigning
specific materials to specific structural components). In both cases the goal was to develop
a means whereby the advantages presented by the detailed information provided by the
MDO procedures could be effectively integrated into the structural design problem prior to
the selection of the final configuration or materials for a structural concept.

For the cases using continuous design variables, two sets of problems are
presented. Both sets involve configurational design. That is, determining the structural
configuration that provides the most desirable design characteristics. These two cases
involve the design of a ten bar truss and a three spar wing box. For the ten bar truss, the
spatial location of three nodes were allowed to vary within specified regions. This allowed
for a wide range of possible truss geometries. The weight design space for the least weight
trusses (based upon a fully stressed design concept) were represented using a neural
network for this six-dimensional design space. This example was intended to highlight the
major considerations involved in the neural network design space mapping procedure. An
optimal truss configuration to minimize weight was determined. The second example in this
set was that of a three spar wing box, in which spar locations are considered as the design
variables, and the design space defined by weight and natural frequency. These were then
used as the merit functions in an optimal design study which then used the neural network
in lieu of the more costly MDO procedure. This configurational wing design problem is
intended to describe a more complex, and realistic, application of the neural networks for
design space representation.

The second set of configurational design problems involved the use of recursive
learning, which is a procedure used to minimize the amount of data generated to form the
neural network design space representations. Reduction of training data was useful since
training data generation involving FEM and MDO procedures was very time consuming.
Recursive learning effectively refines only those regions of the design space that show the
most promising design characteristics. Two examples are presented in this report. The first
is another ten bar truss, this time with only a single node considered for the configurational
design. This simple example describes the basic implementation of the recursive procedure,
and allowed for a "visualization" of the design space as the recursive training of the neural
network proceeded. The second example involves the configurational design of a four spar
wing box, where weight, tip deflection, and natural frequency are considered
independently as the objective functions for a subsequent configurational design using the
neural network model for the design space. Again, this wing box example was meant to
represent a more realistic application to configurational design and the recursive learning
approach.

The case of discrete design variables was considered next. A series of examples are
presented. In order to be consistent, the first example is that of a ten bar truss in which four
materials were considered for each of the ten structural elements which made-up the truss.
This example is used to show the applicability of the neural network approach to discrete
design space representation, as well as the ability of the neural network to extrapolate from
a given set of designs to determine improved designs. For the design problems involving
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discrete design variables, the neural networks were then used in conjunction with a
simulated annealing procedure to determine least weight material configurations.

The second discrete design variable study involved the material design of an
Advanced Control of Space Structures 1I18 (ACOSS I) space truss, in which four materials
were considered for each of the 113 structural elements (a difficult combinatorial
optimization problem with 4113 possible material systems). An "estimate" of the time
required to perform an exhaustive search for this combinatorial design problems was 1052
years using conventional finite element analysis and optimization. This example showed the
utility of the neural network approach to the design space representation of extremely large
discrete design spaces based on very small (small in relation to the combinatorial size of the
problem) training data sets. Material systems that minimize the weight of the truss were
determined by using the trained neural network as a design space approximation for the
simulated annealing procedure. The simulated annealing procedure provided the means to
traverse through the discrete design space in an efficient manner to determine improved
designs.

The final discrete design variable case involves a brief study of the use of this type
of design variable modeling to the skin design of a composite wing. An alemative method
for the designation of the material design variables was considered in this case.

The last set of design studies involved the specific design application of MDO and
neural networks to the problem of damage tolerant structures. For this application case two
structural concepts were considered. The first was the configurational design of a helicopter
tail boom for which six possible damage conditions were considered. A fully-stressed
design procedure was used to achieve minimum weight designs while satisfying all
applicable stress constraints. Weight and natural frequency were considered as the objective
function/constraints for the neural network analysis. The neural network was able to
accurately represent trends and identify optimal configurations. In the second example, an
undamaged baseline five spar wing box was designed for flutter and stress constraints. One
hundred and fifty possible damage states were analyzed for flutter and natural frequency
characteristics. These results were used to train a neural network. The neural network was
then used to predict flutter occurrence and the natural frequencies for all possible damage
conditions.

For all the examples, both continuous and discrete, various network configurations
and levels of training data were employed. This helped provide some insight into both the
character of the structural design spaces as well as to evaluate the use of neural network
modeling of the design space. The following sections of this report are devoted to a
discussion of the MDO procedures used during this study, a brief discussion of neural
networks including training procedures. The remainder of the report is then devoted to a
presentation of each of the design studies mentioned above and presents information on the
models, analysis methods and results.
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2. STRUCTURAL MODELING FOR PRELIMINARY DESIGN

This section provides a brief overview of a number of aspects of the preliminary
structural design problem based upon finite element modeling and analysis. The section
focuses on the those issues related to the preliminary structural design of lightweight
structures with a particular emphasis on lifting surfaces.

2.1 Definition of Design Variables

The process of structural design is complex and not well suited to being portrayed
as a specific process. Usually the design of an airframe or of a particular component is an
evolutionary rather than a "revolutionary" process. One attempts to take advantage of
successful aspects of similar earlier designs and to avoid the problems encountered in
previous "failures." The eventual purpose is to develop the guidelines (i.e. drawings,
CAM instructions, etc.) which will allow for the fabrication of the structure.

The structural design usually takes place at a point in the flight vehicle design
process where the aircraft performance requirements and external aircraft geometry have
been defined. These conditions are used to provide the "mold" lines for the structure and
the loads, temperature, etc. to be used in the selection of the materials and their
distribution within the "structure." Given these requirements the designer then must select
the material, size and relative orientation of each of the structural components. Those
specific parameters over which the designer has "control" are referred to as design
variables. The thickness at a particular point on a spar, the number and distribution of
rivets, and the skin material are design variables. Weight, natural frequency, deflection at
a point or flutter speed are performance indicators or measures of merit but they can only
be indirectly controlled through the selection of the design variables.

In the past structural design has played a somewhat limited role in the basic
aircraft conceptual design phase. The basic aircraft geometry was defined based upon
"aerodynamic" considerations and thus became a constraint for the structural designer.
Often target weights were selected based upon pervious designs and these too served as
design goals subject to the wide range of performance constraints.

As the structural design proceeded, loads were defined and the basic structural
concept selected. An iterative process was initiated in which static loads analysis and
design typically preceded other considerations such as fatigue, aeroelasticity(static and
dynamic), survivability, reliability, manufacturing, etc. The structural designer worked to
achieve acceptable margins of safety on all components for a wide variety of flight
conditions. Satisfying these often conflicting requirements has always been a challenge to
the structural designer, particularly considering the extreme emphasis placed upon weight
for almost all flight vehicle applications. As this iterative process developed, those
parameters referred to as design variables also change. Since the mold lines may be fixed,
they are not acceptable design variables and are used in the formulation of the structural
design problem, not its solution. When the basic structural layout is selected, such as the
number and placement of primary structural components (i.e. spars and ribs), these
parameters are no longer variables. New variables, such as the size of these components,
are added. As new details are included, new design variables must be determined along
with the sensitivity of the design to these parameters.

Recently more emphasis has been placed upon the integration of the various
technologies earlier in the vehicle design process with the expectation that this can allow
for improvements in both the design process and the product. This has allowed the
designer to work with a much larger variety of design variables. In most cases as more
variables are introduced into the problem, the more complex and time consuming it can
become. The proper selection of design variables is an important consideration at each
phase in the process. It appears as if the longer a parameter can be "active" in the design
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process, the greater the benefit that can be achieved by the proper selection of that
parameter. As one might expect, the ideal situation would be to let every variable
participate in all levels of the design, but the obvious practical considerations make this
impossible.

The goal of improving the preliminary structural design process has been the
motivation for the research presented in this report. As mentioned in the previous section,
the ability to use the best available analysis methods as early as possible in the design
process when the smallest number of design variables have been fixed may allow for the
structural designer to take a more proactive instead of reactive role in the system design
process.

In this report a number of different types of design variables are used as part of
the analysis and design studies. They are briefly discussed below with emphasis placed
upon the challenges they bring to the preliminary design process. The t" rm "design
variable" is used to describe those parameters which define the characteristics of a
"model" of a structural concept. Given a complete set of these parameters, appropriate
analysis procedures can be used to determine the characteristics of the model, from which
one can infer the performance of the structure.

2.1.1 Continuous Design Variables

These may represent the most common of the design variable types. The design
variable can be used to define a parameter which can vary continuously, consistent with
the appropriate level of numerical discretization, over some range of values. Examples of
this type of variable might be the thickness of a metal wing skin at a given point, the
chordwise location of a spar or the diameter of a hole. Though cost may he a factor, there
are no practical or physical constraints that would not allow this value to assume a given
value, plus or minus a prescribed tolerance.

This type of parameter is often used in analytic optimization procedures. If
various measures of merit can be expressed either analytically or numerically as functions
of this variable, numerous methods exist which can be used to identify local or global
extreme values of these measures of merit. These extremum can be used to provide
information necessary for design decisions. These parameters are often used in
"parametric" trade studies to help describe the behavior of the system for a range of the
parameter. This data is presented on a "carpet plot" in order to provide a visual
description of the influence of design variable on the measure of merit.

2.1.2 Discrete Design Variables

The second type of design variable is one which is only allowed to assume a finite
number of discrete values over some prescribed range. Examples of this type of variable
would be the number of composite plys in a wing skin, the number of spars, or the
number of rivets in a given rivet pattern. These variables can be usually designated as a
series of integer variables, though the sequence of the integers may have little physical
significance.

This type of design variable definition leads to a combinatorial design or
optimization problem. Since there are a finite number of design variables which can
assume only a finite number of values, it is conceivable that an exhaustive search of the
design space would be possible. This is true only for problems of very limited size and
complexity; however the cost of analyzing all of the potential designs becomes
prohibitive very quickly.

Another aspect of this type of problem is the discontinuous behavior of the mcrit
function. This presents problems for convtntional numerical optimization methods as
well as introducing difficulties, even with visual presentation of this type of information.
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2.1.3 Configurational Design Variables

In this report a number of configurational design variables have been used. These
design variable have been used to represent parameters which provide the relative spatial
arrangements of components within a structure. As will be discussed below, these types
of variables have a large influence on the numerical model used to represent the structure.

Configurational design variables could be continuous, such as the chordwise
position of a spar, or discrete, such as the number of spars. In either case, the parameter is
related to the geometry of the model usod to represent the structure. Since significant
effort is often required to generate the models used for structural analysis, changes in
those variables which influence the basic model can be rather "costly." Thought these
types of design variables are not often used in conjunction with finite element analysis,
there has been more emphasis placed on configurational design in recent years.

2.1.4 Material System Design Variables

In addition to the relative orientation and size of a particular structural component,
the material used to fabricate the component is an important design issue. Material
parameters such as stiffness, density, allowable stress and strain levels are just a few of
the material characteristics used to select an appropriate material. In the design problems
considered in this report, material selection has been developed as a discrete design
variable problem, where the designer is allowed to select from a limited list of potential
materials with prescribed properties. This should be differentiated from issues related to
the design of a material for specified performance. The design of a material with
specified performance was not considered in this study.

2.2 Finite Element Based Structural Analysis

The basic analysis procedures used in this study to determine the characteristics of
a structure were based upon the finite element idealization and associated displacement
method of structural analysis. There are numerous analysis methods available but the two
outlined in the following sections were selected for this study. The first software system,
SWIFTOS 19, was selected since it was developed in-house and therefore it was possible
to modify it for the series of special problems considered in this study. SWIFTOS is a
rather small and efficient code for relatively simple analysis and design problems. The
second software system, ASTROS 3, was selected since it represented the state-of-the-art
in finite element based multi-disciplinary analysis and design. Each of the methods
provided the design space information necessary to nerform the preliminary structural
design studies in this report.

2.2.1 SWIFTOS

SWIFTOS 19 (an acronym for the Structural WIng Optimization System) was one
of the two finite element analysis and design packages used for the generation of design
information in this study. SWIFTOS was created for the preliminary static stress analysis
and fully-stressed design (FSD) of either space trusses or planar lifting surface structures.

The code is based upon the displacement method and has a very limited library of
element types. Pinned truss structures were modeled by rod (axial force) elements and
only fixed or free boundary conditions were available at each node. The lifting surface
models were developed using subparametric quadrilateral membrane elements (plane
stress) and rod elements. Only simple distributed pressure loads or point loads were used
in these idealizations and a dynamics analysis capability based upon the consistent mass
matrix representation was included. SWIFTOS provided information on nodal
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displacements, element stresses, natural frequencies and finite element model weight in a
small and efficient analysis package. Additional details on the element properties and the
methods of analysis used in SWIFTOS can be found in Reference 19.

2.2.2 ASTROS

ASTROS is a more general design package, developed by Northrop under
contract to the Air Force, which incorporates many of the finite element types of
NASTRAN 20. Reference 3 is a series of documents which provide the theoretical
background, user instructions and sample case studies using ASTROS. The software
contains a rather extensive element library although only a limited number of element
types were used in the studies documented herein. ASTROS was used for both its
analysis and optimization capabilities.

ASTROS also has aerodynamic paneling techniques for load generation and a
large range of applicable design constraints. It has a large range of analysis capabilities
along with an associated larger "computational overhead." In ASTROS, the user can
specify for output a wealth of intermediate as well as final calculation data. Though a
brief discussion of the use of ASTROS as a source of design space information is
provided in a later section, the reader is encouraged to examine Reference 3 for more
details on the capabilities of ASTROS.

2.3 Automated Finite Element Model Generation

The ability to rapidly and efficiently develop the finite element representation of a
candidate structure was an important consideration for this research. If this process was to
be conducted by hand, even a relatively crude finite element model for a lifting surface
could require "man-days" to formulate. Because large numbers of finite element models
were to be created for this research, a data preprocessor, called XPUT, was developed.
This FORTRAN software used a non-graphical, text interaction with the user to develop
both the finite element model data as well as the other information necessary to perform
structural analysis or design of a specific concept. The information provided was similar
in form to the data available to the structural designer such as airfoil section geometry,
numbers of ribs, spars etc.. This was then converted into the necessary information and
formatted for the finite element analysis. Additional details on the basic model
descriptions are provided below.

This preprocessor had the capabilities to be operated in an interactive mode with
an informed user to define the finite element model for a specific design concept.
Additionally, the ability to operate in an "automated" fashion was included. That is, those
model characteristics or design variables, that were to be modified, along with the
modification scheme, were input to the preprocessor and the finite element models were
generated automatically. This became especially important in the recursive learning
cases, where the neural network provided "feedback" to the preprocessor -- in effect
specifying the geometry or material types for the next finite element model.

The two main families of models considered for this research were simple pinned
trusses, and built-up semi-monocoque wing box models. The development of these model
types will be discussed in the following sections.

2.3.1 Finite Element Model Types

The discussion of model types will center on simple planar truss models used for
the demonstration design studies and the semi-monocoque finite element wing models
used for the more involved design studies. These models were created using XPUT or a
modification of XPUT. The ACOSS II space truss used for material design was obtained
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from Reference 3. This space truss model's basic configuration or element arrangement
did not vary through the study so it did not involve the use of XPUT.

The truss models were created, analyzed, and designed using a modification of the
basic SWIFTOS source code. This modification involved the utilization of only the
specific SWIFTOS subroutines needed to model the truss under consideration. As an
example, for the five bar truss example shown in the Section 1, only the rod element
stiffness subroutine, the global stiffness assembly subroutine, and the simultaneous
equation solver were used for the analysis portion. This group of subroutines was in turn
used by the fully-stressed design procedure to obtain the least weight designs. The XPUT
preprocessor was removed for the truss problems, and in its place was substituted a
simple model geometry sequence -- a sequence that was unique for each truss problem
considered. This model geometry sequence was nothing more than a description of the
nodal coordinates, and how these coordinates were allowed to vary when being
considered as the configurational design variables. After each new truss was created by
the geometry sequence, it was designed using the FSD procedure. The finite element
model and design information were then stored for later use. This truss design procedure
was very efficient, with the ability to literally design hundreds of trusses in a matter of
minutes.

This illustrates the utility of a procedure like SWIFTOS, though similar studies
could have been conducted with ASTROS through the use of a special executive
sequence, since the purpose of each of the two software packages was to provide
preliminary design information, the most efficient package was used for each design
study considered.

The planar lifting surfaces under consideration were of a conventional semi-
monocoque design, and had as their main structural components spars, ribs, rib and spar
caps, and upper and lower skins. The configurations for the models generated by XPUT
were the same regardless of whether the final output was in SWIFTOS or ASTROS
format. A simple but representative finite model used to analyze this type of lifting
surface would resemble the model shown in Figure 4.

The finite element model consisted of a set of quadrilateral membranes
representing the skins, spar webs, and rib webs. Rod elements could be used to represent
the spar caps, rib caps, and connecting posts (which connected the upper and lower
surface nodes). In SWIFTOS, subparametric quadrilateral membranes were used to model
the membranes while in the ASTROS implementation of XPUT, spar webs, rib webs, and
skin elements could be represented by either isoparametric quadrilateral membrane
elements or shear panel elements.

To define the finite element model, the following information was provided to the
preprocessor:.

1. Root and tip chord for the planform
2. Lifting surface semi-span
3. Sweep and dihedral angles
4. Airfoil cross-section
5. Lift distribution information - ( Magnitude and distribution for the SWIFTOS

version or dynamic pressure, air density, Mach number and load factor for the
ASTROS version)

6. Material properties
7. Specification of element groups (as well as element types in ASTROS version)
8. Specification of element materials
9. Specification of element thicknesses and cross-sectional areas
10. Specification of design variables

As one can see this is not the typical information provided to a finite element
analysis program. The goal was to develop the capability to obtain the required finite
element data from information more typical of the structural designer's vocabulary. This
was then translated into the necessary format for either SWIFTOS or ASTROS. This list
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Figure 4. Typical Finite Element Representation for a Lifting Surface

16



provides the basic physical parameters necessary to define a lifting surface structural
concept.

This information provides all the necessary data for the formulation of the finite
element model. A cantilevered boundary condition was applied in SWIFTOS
(cantilevered at the root), while in ASTROS an "inertially supported" 3 boundary
condition is applied. An experienced XPUT user could create a complete finite element
model in several minutes, a model that was ready to be analyzed or optimized. While the
resulting models were intended to have a high degree of flexibility in their configurations,
the formulation was limited by a number of constraints. These constraints defined the
range of possible model configurations, element types, and loading conditions. When
operated in an automated fashion, the generation of each finite element model took a
matter of seconds. Figure 5 illustrates the level of detail for a typical lifting surface finite
element model created by the pre-processor and used in this study. This model had 3
spars at 10, 35, and 85 percent chord locations. There were 13 ribs evenly spaced in the
spanwise direction. The full aerodynamic planform is shown by the dotted lines in the
Figure 5. The model was composed of 64 rods and 117 membranes with 234 degrees of
freedom (three degrees of freedom at each node). The wing was cantilevered at the root.

For the SWIFTOS designs the subparametric elements were used for the skin and
spar and rib web elements. These subparametric elements based upon the development in
Reference 21 provided reasonable in-plane bending stiffness. The subparametric elements
showed good correlation with similar models developed using ASTROS in which the
isoparametric elements were used for the skin and shear panels were used for the rib and
spar webs. For each of the design studies documented later in the report, the same model
type and analysis procedure was used so that all comparisons were made for a similar
idealization.

2.3.2 Applied Loads

A number of aerodynamic loading schemes have been used in finite element
analysis packages, many of them quite accurate in their modeling of the aerodynamic
forces (and just as complex). ASTROS employs USSAERO22 for subsonic and
supersonic steady aerodynamics, Doublet Lattice Method 23 and the Constant Pressure
Method 24 for unsteady aerodynamics. Simplified but realistic distributions were
considered acceptable for SWlFTOS, and it has been shown that a distributed pressure
loading may be adequate at the preliminary design stage2 5.

The preprocessor, XPUT, was used to create a simplified pressure load for use
with both SWIFTOS and ASTROS. The pressure load applied over the lifting surface is
termed the "loading plane." The magnitude of the pressure load could be varied in both
the chordwise and spanwise directions, as specified by the user; this distribution could be
adjusted to give the desired total load and center of pressure for the corresponding flight
condition. After the loading distribution was determined, the planform was divided into
regions, termed "aero-panels." The pressure over these panels was then integrated to
determine a set of discrete point loads, which were then transferred directly to the model
nodes. Figure 6 shows a typical loading plane used for a SWIFTOS load distribution. For
a detailed description of the SWIFTOS loading development refer to Reference 19.

As mentioned previously, the generation of the aerodynamic loads in ASTROS
followed a discrete paneling scheme where information on airfoil cross-section, wing
planform, and flight conditions was used to determine the pressure distribution over the
lifting surface. This pressure distribution was integrated and splined26 to the structural
nodes of the model. The calculation of the aerodynamic loading was typically a
computationally expensive portion of the ASTROS design procedure, and use of the
simplified pressure distribution appeared to be an acceptable alternative based upon
computational efficiency at the conceptual design stage.
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2.3.3. Material Properties Specification

The SWIFTOS finite elements used isotropic materials, requiring that the
modulus of elasticity (E), Poisson's ratio (v), weight (or mass) density, as well as the
maximum allowable tensile, compressive, and shear stress values be input. ASTROS can
use isotropic, anisotropic, and orthotropic materials, but XPUT only considered isotropic
materials in the automated preprocessing. For the applications considered here, up to five
materials were used in a finite element model. This was a limitation of the XPUT
procedure and not a limitation of either SWIFTOS or ASTROS. E and v were used in the
stiffness generation procedures, while the allowable stress values were used in the design
sequence. The material density was used to calculate the weight (or mass; this was simply
a density times volume) of the model.

Individual element groups could be composed of the same material, or of different
materials. The material element groups were defined as follows:

1. Individual spars
2. Individual ribs
3. Skin bays (defined by those skin elements that connect two adjacent spars)
4. Connecting posts (all)
5. Spar caps (individual spars)
6. Rib caps (individual ribs)

The automated assignment of material properties to all of the elements in the same
element group was useful in reducing the information required in the model data
preparation.

2.4 The Design Space

One remaining issue related to the finite element model development is the
manner in which the individual design concepts were distributed within the structural
design space. Depending upon the type of design variables being considered, a relatively
large number of designs could be required to accurately define the design space. For all
the design studies performed here, it was necessary to distribute the designs throughout
the design space under consideration. For the simple five bar truss discussed in Section 1
and shown in Figure 1, a 61x61 grid of fully-stressed designs were evenly distributed
throughout the design space.

Three different approaches were used to modify the finite element models
according to the needs of the respective design study. The first approach involved
assigning a uniformly distributed random value to each design variable. This approach
was selected to avoid a user bias in the selection of the design variables. The second
approach involved an evenly distributed set of values for the design variables in the
allowable region of the design space. This approach helps to minimize the possibility that
regions might have very sparse sets of designs, leading to a possibility of poor resolution
of the design space in these regions. This second approach was also rather simple to
implement and was computationally straightforward. The final approach involved the
recursive learning procedure, in which an initial set of training data was generated based
either on a random set or an evenly distributed set of design variables. Then, all further
information on the design space were obtained based on the neural network predictions
for promising regions of the design space. Figure 7 shows what these three distribution
schemes might look like for a two-dimensional design space problem.

Figure 7a shows a random distribution of 36 designs based upon the independent
selection of two continuous design variables, X and Y. As expected, the designs are
relatively well dispersed. Figure 7b shows an evenly distributed set of 36 designs, while
Figure 7c shows the type of distribution to be expected from the recursive learning
procedure. There are two distinct regions of clustered designs shown in Figure 7c. These
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regions may be defined as regions of "desirable" design characteristics based upon a less
refined description of the design space, and additional designs have been recursively
added to these regions to better refine these portions of the design space.

Because the desired design space representations to be obtained from the studies
in this report require design information from multiple finite element models, the
development of a suitable procedure for the rapid development of these models was
developed. The techniques used to select the element gages, or to perform "point" designs
on each individual finite element concept will be described in the next section.
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3. MULTIDISCIPLINARY DESIGN INFORMATION

This section deals with the methods used to develop the design information
necessary to conduct the preliminary structural design studies. An overview of the
analysis capabilities of the two programs from which all the design information was
subsequently obtained, SWIFIOS and ASTROS, was presented in the previous section.
Each of these programs also has the capability to determine optimum designs, in a least
weight sense. When used simply for analysis, these finite element-based programs were
only able to estimate the design based upon the sizes of each structural element as
specified by the user. When the optimization capabilities of the program were used, each
was able to determine the least weight structure based upon various design criteria. The
basic purpose of this research was to develop the capabilities to select the "best" of the
least weight designs as developed using these MDO procedures.

SWIFTOS used an optimality criteria approach to least weight design, while
ASTROS used a math-programming procedure to obtain least weight designs. (Note that
ASTROS has the capability of using optimality criteria like SWIFTOS but the latter was
used for the reasons discussed earlier.) The benefits and limitations of both procedures, as
well as the sequence of steps that must be performed to obtain the final designs from
these programs, are outlined below.

3.1 Structural Optimization

As discussed, the structural design problem involves the selection of an
appropriate set of design variables to achieve required performance at an acceptable
"cost." One could feasibly pose a problem in a fashion in which all of the design
variables, i.e. basic configuration, materials, and component sizes, were considered
simultaneously and an iterative procedure developed to satisfy the constraints and to
minimize the cost. In the approach to preliminary structural design used in this study, a
two step approach was taken. This required the separation of the design variables into two
classes. The first class of variables were used to parameterize the basic configuration
geometry and material types, the second class was related to the size of each structural
component. The design studies were conducted by selecting a finite subset of all possible
designs as defined by the first class and then using the state-of-the-art MDO optimization
techniques described below to determine the values for the second class for each specific
design to achieve an optimum in a least weight sense. The design space defined by the
first class of design variables and then spanned by each of the optimum designs was
parameterized using the neural networks and subsequently evaluated to determine the
"best" of the optimum designs.

Subsequent sections will discuss this approach and detail the application of the
neural networks to this problem. This section provides an overview of the methods used
to quantify the second class of design variables. Once the structure has been idealized and
a finite element model constructed, an initial set of element "size" design variables were
defined. For a Sim finite element model optimized using SWIFTOS or ASTROS only
the proportion variables were considered; these were the membrane thicknesses and rod
cross-sectional areas for those elements which were considered as variables in the design
process.

These design variables were changed using a variety of iterative procedures that
seek an optimum design in a least weight sense. These N design variables used to define
the sizes of various elements within the structure can be written as an Nx I vector D. A
performance index M that is a single valued function of D must be determined and is
used to measure the merit of competing designs. Because of the possibility of changing
its sign or inverting, M can always be chosen so that the goal is
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M(D) -* minimum (3.1)

The search must be carried out in an N-dimensional space that has Q constraints. In a
general class of structural synthesis problems, these constraints can be formulated as Q
functional inequalities

gq(D) 5 0, q= 1,2,3 ...... Q (3.2)

Points in the design space may be compared by determining the merit function at these
points; a lower merit function indicates a "better" design. This comparison is only valid if
both points represent acceptable designs. For the structural design problem a design is
considered acceptable if no yielding, buckling, or other failure condition occurs (failure
constraints). Also, the design variables cannot violate their established boundaries (e.g.,
max. and min. gages -- geometric constraints). The constraint set is almost certain to
contain some complicated and perhaps implicit functions of D, demanding considerable
machine computation for their evaluation. There may be constraints on deflections at
specified locations in the structure, bounds on natural vibration frequencies, requirements
about the avoidance of such aeroelastic instabilities such as flutter or divergence, etc. For
simplicity, these performance constraints will be excluded from the following
discussions though they were considered in a number of the design problems discussed
later in the report.

There are two main approaches available for optimizing the structure, these are
based upon either analytic techniques or numerical methods. An analytical technique
relies on the algebraic combination of Equations (3.1) and (3.2), where the inequalities of
(3.2) are usually converted to equalities. The advantage of the analytical approach lies in
the parametric evaluation of MoPt as a function of the design variables. This parametric
capability permits ready evaluation for the most efficient determination of the design
variables. The disadvantage is the difficulty of formulation as the problem complexity
increases (i.e., an increase in the number of design variables and constraints) as well as
the inability to express the constraints as manageable algebraic functions.

Numerical approaches can be subdivided into direct and indirect approaches. The
direct approach makes an intelligent and systematic search among the design variables to
locate the minimum value of its objective function. This method is general, but is
computationally expensive if large numbers of variables are involved.4 Linear and non-
linear math-programming techniques are the most prominent in this group of numerical
techniques. Math-programming techniques can be characterized as search techniques
which progress toward an optimum based on information available from the current
design.

The indirect approach uses optimality criteria that are usually developed using an
"intuitive" approach and are "expected" to produce the desired result. Fully-stressed
design (FSD), as one example, is usually equivalent to minimum weight in a structure
designed for strength27 . Optimality criteria methods are those approaches in which an
apriori statement of a condition or set of conditions is made along with an algorithm to
alter the design variables in order to achieve that condition. When that condition is
achieved (such as each element within the structure is stressed to its constraint value) then
it is assumed that the desired minimum weight is achieved. Such procedures are fast.
They can handle large numbers of design variables; thus, they are practical for the design
of large structures.

While the direct numerical search procedures of nonlinear programming provide a
correct approach for both strength and stiffness design, early attempts proved that they
were somewhat inefficient for the design of large practical structures. FSD procedures are
different from math-programming in that they attempt to reach a global minimum of the
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merit function by forcing each design variable to a constraint surface, though this does
not guarantee a global minimum. FSD is typically efficient and often yields near optimal
solutions. Notable limitations in fully-stressing were established when, during the late
fifties, it was shown that nonlinear programming 28,29 was the correct framework for the
structural synthesis problem, and that FSD was generally incorrect for indeterminate
structures. The fact that a true least weight structure is not generated for an FSD becomes
of lesser importance when compared with the ease with which the improved design is
reached 30. Designs produced using FSD are often superior to those produced by alternate
methods, notably in cases where rigorous optimization might be impractical, such as at
the preliminary design stage.

For aircraft structures in which the design is governed exclusively by strength
requirements, the fully-stressed design method offers an economical and reliable
approach to optimizing structures having large numbers of design variables 31 . Although
FSD methods cannot be proven to yield absolute minimum weight material distributions,
their application has yielded practical and efficient airframe designs 32 . The ease of
implementation and application of FSD certainly offsets the lack of a precise
determination of the minimum weight design.

The current trend in finite element-based design optimization deals with
multidisciplinary approaches to design, of which ASTROS is an example. No longer is
analysis the only domain in which finite element methods can make significant
contributions; they are now being accepted as important design tools when linked with
optimization methods. ASTROS allows for the design of a finite element model with
constraints on such things as displacement, natural frequency, and a range of aeroelastic
performance parameters. Many other design constraints are feasible. The motivation for
design tools such as ASTROS is that improved designs can be obtained by considering
multiple design constraints simultaneously, and reducing the amount of time required for
a typical design cycle.

One last feature of each of the methods discussed above which should be noted is
that, in each case ( optimality criteria or math programming) as the iterative process
proceeds, information gained from the analysis of previous designs is always eliminated.
The failure to exploit the information on each design as one proceeds through the "design
space" prompted certain developments in this current effort.

3.1.1 Fully-Stressed Design - SWIFTOS

SWIFTOS was a procedure based on the application of a "fully-stressed"
optimality criteria. Optimization, in this context, involved the determination of the "gage"
of specified elements within the finite element model. These elements were designed to
meet both stress and minimum gauge constraints, with the objective of minimizing the
total weight (or mass) of the model. The following sequence was performed in the design
cycle:

1. Specification of design variables
2. Specification of minimum gage for all design variables.
3. Analysis
4. Resizing algorithm
5. Convergence check.
The analysis provided information on the stress levels in all design elements. This

iterative procedure involved a check on constraint violation(s), a design variable resizing,
and a new finite element analysis of the model based on the newly sized elements. Once
all design element constraints were satisfied (either by reaching a stress or minimum gage
constraint), the process was concluded.

Two constraints were imposed on the design variables; maximum allowable stress
and minimum gage. The minimum gage was defined during the design variable
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specification. The rods were axial force members, with only tensile or compressive stress.
The maximum stress constraint was defined by the material stress constraint (either
tensile or compressive) provided. The quadrilateral, subparametric elements had a more
involved stress constraint based on a von Mises stress criteria.

The design procedure altered the sizes of those elements and element groups that
were specified as the design variables. In a manner similar to the element material
designations, all element groups could be specified as design variables or individual
groups, and individual group members were specified (i.e., spar 1, rib 3, etc.). Each
member could consist of several elements; each of these elements was a unique design
variable and was designed to a unique value of area or thickness. The following element
groups could be specified as the design variables

1. Spar membranes (all, or individual spars)
2. Rib membranes (all, or individual ribs)
3. Skin membranes (all, or individual bays)
4. Connecting posts (all)
5. Spar caps (all, or individual spars)
6. Rib caps (all, or individual ribs)

As each design element group or member was specified, the minimum gage for that
group or member was also required.

After the initial analysis, the element stresses were compared to the allowable
stresses for all elements specified as design variables. Element thicknesses and areas were
reduced or enlarged until either the applicable stress constraint was met or the minimum
gage was reached.

For the rod elements, the axial stress was either tensile or compressive. The
following relationships were used to modify the rod areas at each design iteration.

g 0_ X A, w = A = F-
,T~C, ((T.C)

If g, < 1.0 AN,,w = Ag,*g2

(0.9 <g, < 1.0) ANEw = A g (3.3)

If ANew < AMinimum then ANew = AMinimum

and Fr = rod force

There were multiple conditions that could be applied in determining the new rod
area. For values of g, less than 1.0 it was noted that an increased reduction rate in area
decreased the required number of design iterations. The area relations for gr < 1.0
reflected this.

The membrane elements had three stress components that were accounted for
using the von Mises stress constraint. The following procedure was used to determine the
membrane thicknesses at each iteration.
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g ((TC) (Y(T,C) ((T,C )2

If (g > 1.0) tNte =gtoi•

If (g < 1.0) tNew g2t°"giW (3.4)
or (0. 9 !5 g < 1.0) tuw = g3to,uaj

If t New < tMiuam --- tNew = tsim.

It has been noted that a reduced number of iteration cycles were required when a
greater reduction rate in thickness occurs (for g < 1.0). The thickness relations for g < 1.0
reflected this.

After each iteration the resultant element stresses were again compared to the
allowable stress. Thicknesses and areas were modified, if necessary, until a convergence
of the solution (i.e., all element stress or minimum gage constraints were satisfied)
occured. The termination of the iterative process was based upon satisfying a prescribed
convergence criteria. The solution was said to have converged when all element stresses
were within + x% of the applicable stress constraints, or at minimum gage. For the cases
considered in this report, a ± 5% convergence condition was selected. This convergence
criteria had a direct influence on the uncertainty in the resulting "optimum design" and
had a bearing on the eventual quantitative description of the design space. The
convergence criteria could be modified. A reduction in this value would directly translate
into an increased number of design iterations. All specified design elements were
redesigned at each iteration, and typically when al elements met the + 5% condition the
majority of the elements were designed to within 1% of their respective stress constraint.
The selection of the 5% tolerance was based upon earlier experience gained with
SWIFTOS and an attempt to expedite the computations.

One last consideration related to the use of the optimality criteria, where no
assurance of either local or global miminum was made, was that of the "initial" design.
Though the initial design was usually selected to be of uniform "gage" some results are
provided which illustrate the influence of the starting values of the design variables on
their final, "optimum" values.

3.1.2 Math Programming Optimization - ASTROS

ASTROS is a large, multidisciplinary design program. Math-programming was
used for the majority of optimization problems, but fully-stressed design was also
available. Design variables could represent rod areas, shear and membrane element
thicknesses, bar areas, and concentrated mass values. Constraints could be placed on
stress-strain, displacement, modal frequency, and aeroelastic effects (lift effectiveness,
aileron effectiveness, divergence speed, flutter...). Multiple boundary conditions and
multiple loadings could be included in the problem. The goals of such a program are to
emphasize the interdisciplinary features of the design task, reduce design time, and
provide an improved design.

One would most likely consider ASTROS to be applicable to preliminary
structural design at the point where the basic geometry of the structure as well as the
appropriate material types had been defined. At this point the more cow. -lex interaction
of strength design and aeroelastic constraints can take place. It was the goal of the current
effort to establish an approach whereby an MDO procedure could efficiently be used in
the early stages of the design process to influence the selection of the basic structural
configuration and material system. It is, of course, difficult to describe concisely a
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program as large and involved as ASTROS in the limited space available in this report.
Only those aspects of ASTROS pertinent to the current applications are described. The
following comments are meant to be informative descriptions and not detailed theoretical
developments.

The mathematical programming techniques used in ASTROS perform a search for
the optimum based on currently available information, such as the gradients obtained for
the design variables in a given design iteration. Math-programming techniques are
general in application, typically being robust procedures; however math-programming is
also computationally intensive. The practical limitations imposed by present computer
resources allows for the consideration of 200-300 design variables at most for a given
design problem. ASTROS uses an algorithm which was developed in order to exploit a
combination of features from the feasible directions 33,34 and generalized reduced
gradient 35 algorithms. The procedure performs a one-dimensional search based on a
polynomial interpolation with bounds.

In ASTROS, a major efficiency gain can be realized by approximating quantities
in redesign rather than computing them explicitly. This is termed the approximate design
problem. In the approximate design problem an assumption is made that constraint
gradients are invariant with respect to changes in the design variables. The quality of this
assumption is enhanced by the use of inverse design variables (Xi = 1/Vi). The motivation
for this is that strength constraints are inversely proportional to structural thickness. Due
to this assumption limits are imposed on the changes in design variables during design to
provide a more stable convergence in the optimization.

A number of element types (axial force, shear panel, quadrilateral membrane, and
concentrated mass) were used as design variables. Other finite element types are available
in ASTROS but were not used for the applications considered here. For the above finite
elements, the mass and stiffness matrices are a linear function of the design variable.

A number of design constraints were also available in ASTROS. The applicable
stress-strain constraint based upon a von Mises constraint was used for isotropic
materials. A natural frequency constraint was imposed in a number of the applications
that used ASTROS.

Gradient information was required by all math-programming design approaches.
The gradient information provided the sensitivities of the objective function to each
design variable as well as the constraint sensitivities to each of the design variables. The
gradients of the objective function were considered invariant--this is a key to performing
the approximate design problem. The gradients of the constraints were all computed
analytically, leading to a number of "intricate" computations. There were many involved
sensitivity analysis developments in ASTROS. The static analysis strength, natural
frequency and flutter constraints were used in the current effort.

The final consideration related to the development of the design information using
ASTROS is related to the manner in which the iterative design process was terminated. A
specific design was considered to have converged when the following criteria for the
approximate problemwas met:

I A M/ MI 0.005 (3.5)

where M was the previous value of the objective function and AM was the change in the
objective function. The 0.005 value was user definable, and it was noted that a reduction
of this value resulted in a more stringent design termination criteria which produced
designs that were more consistent in representing what appeared to be the true global
least weight design. By making the termination criterion more stringent,the design was
effectively forced to evolve several more iterations with an accompanying reduction in
weight. The resulting designs can be thought to have a smaller "uncertainty" than designs
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obtained with a larger termination parameter. The draw-back is that more iterations must
be performed with a resulting increase in computational cost.

Once the above criterion was satisfied a check was then made to determine if all
constraints were satisfied. The design was considered to have converged when

2.0-CTL < g.,,, < 3.0-CTLMIN

where
(3.6)

g= 1 - Maximum constraint value
CTL - Active constraint identifier (default = -. 003)
CTLMIN - Violated constraint identifier (default = .0005)

where CTL and CTLMIN were user definable parameters. Though no detailed study of
the influence of the design iteration convergence criteria was performed, it is important
that one considers the uncertainty in design when evaluating the suitability of a particular
design concept.

3.2 Point Design Detail vs. Design Space Definition

One final issue briefly addressed above is related to the distinction between
defining an "optimum" point design and providing a quantitative description of the design
space. The two design methods discussed above provide the means to define a "feasible"
design given its basic geometry and materials. The suitability of the final design is
dependent upon the accuracy of the definition of the constraints and the ability of the
optimization algorithm to provide a realistic "minimum weight." The final design is
defined in terms of the set of design variables which are related to the size of individual
components, performance measures (flutter speed, deformation, etc.), and a merit
function (weight). ASTROS can also provide information on sensitivities but these too
are "local" properties of the final design. No quantitative information is provided as to the
dependence of the design on a variety of important design variables.

This is a important limitation particularly in the early stages of the preliminary
design process. It would be ideal if the detailed information developed as the result of the
finite element analysis and subsequent numerical optimization could be used in a more
effective fashion in the early stages of structural design. It is to this end that the efforts of
this research were directed. This section has focused on those aspects of the design
software employed for the design studies relevant to the applications that were
considered. In the subsequent sections, the methods discussed herein are used to provide
detailed design information and are the primary source of "knowledge" as one attempts to
quantify the structural design space.
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4. NEURAL NETWORKS

This section provides an introductory discussion of feed-forward, back
propagation, neural networks. Features of the neural network program employed for this
research, NETS36 , is also described and the back propagation training algorithm is
discussed.

4.1 Introduction to Feed-Forward Neural Networks

Neural networks provide a promising approach that may be used to interpolate or
extrapolate from a set of design information. Neural networks are essentially simple
mathematical models that attempt to mimic the neural structure and computational
elements of biological neural systems (such as the human brain). It is recognized that the
human brain performs many types of processes much faster than even the most involved
artificial intelligence system running on a supercomputer, leading to an interest in
computational modeling of these types of biological systems. The brain has other features
that make this investigation desirable:

• It is robust and fault tolerant. Nerve cells in the brain die every day without affecting
its performance significantly.
• It is flexible. It can easily adjust to a new environment by "learning" -- it does not
have to be programmed in Pascal, FORTRAN, C, etc.
"• It can deal with information that is fuzzy, probabilistic, noisy, or inconsistent.
"• It is highly parallel.
"* It is small, compact, and dissipates very little power.

The history of neural modeling dates back to the paper of McCulloch and Pitts5,
in which they derived theorems related to models of neuronal systems based on what was
known about biological structures in the early 1940's. Around 1960 there was a
resurgence of neural network activity centered around the group of Rosenblatt7 focusing
on the problem of how to find appropriate weights (wij's) for particular computing tasks.
The weights are the medium by which information is stored in the network and provide
the means to perform a mapping of inputs to outputs. Rosenblatt concentrated on
perceptrons (simple, two-layer, feed-forward networks). In 1962, Rosenblatt proved the
convergence of a learning algorithm, a way to change the weights iteratively so that the
desired information could be stored within the network. Unfortunately, in 1969 Minsky
and Papert37 pointed out the limitations of Rosenblatt's perceptron work and the inability
of the single layer perceptrons to perform some elementary computations such as the
exclusive-or operation (XOR). It wasn't until 1974 that Werbos38discovered the back-
propagation algorithm that could be used to determine the weights in successive layers of
multilayer perceptrons. This was independently rediscovered around 1985 by Hart,
Hinton, and Williams 39 , and by Parker40 . Development of this learning algorithm was
central to the resurgence of interest in neural networks. The back-propagation algorithm
has gained much favor in the neural network community and much activity is currently
centered on back-propagation and its extensions. There are many important implications
to training a network to perform a computation. Rather than specifying every detail of a
calculation only a representative set of training examples has to be constructed. This
means that problems where appropriate rules are difficult to determine in advance can be
treated. A recent count indicated that there were 26 various types of neural networks
commonly in use.4 1
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A single neural network may be composed of thousands of neurons. This is
presently the level at which networks can be simulated with either software or hardware.
In contrast the human brain is composed of more than 1011 neurons (with more than 1000
times as many interconnections). The typical activation time of biological neurons is a
few milliseconds, which is about a million times slower than a neuron implemented in
computer hardware. Nevertheless, the brain can perform very fast processing for tasks
like vision, motor control, and decisions on the basis of incomplete or noisy data - tasks
that are far beyond the capabilities of a computer. There is a sharp contrast between the
type of information processing performed by the neural network and the conventional
approach. The neural network has many processors, each executing a simple program,
instead of the conventional situation where one or at most a few processors execute very
complicated programs. And in contrast to the robustness of a neural network, an ordinary
sequential computation may easily be ruined by a single bit error.

Although the original research into neural networks was aimed more towards an
understanding of the physiological aspects of human thought, much current work deals
with determining applications in science and engineering for artificial neural networks
(which exhibit many of the characteristics of their biological counterparts). The recent
interest in artificial neural networks has brought about an entire vocabulary for describing
these networks. Much of this terminology has its roots, understandably, in biology. This
terminology is now discussed.

Figure 8 shows a simple neural network configuration. In this example there is a
"two-element" input layer, a hidden layer of eight neurons, and an output layer with a
single output neuron. This neural network can be described as a parallel system of nine
processors termed neurons (the shaded "circles" are not neurons, but simply inputs to the
network). Each of the neurons has a very simple program. It computes a weighted sum of
the input data from the preceding layer of neurons (or directly from the input layer) and
then outputs a single number which is a nonlinear function of the weighted sum. This
output is then sent to other neurons (in following layers), which are performing the same
type of calculation. The other neurons will be using other weights -- those weights
applicable to their inputs. These various weights can be thought of as the medium in
which information is stored within the network. The number of nodes in the input and
output layers is defined by the problem to be solved. The hidden layers aid in performing
the mapping between an input and its output.

Consider Figure 9 which represents a single neuron. This is the basic building
block of an artificial neural network. There are two major items to be noted in the
diagram. The first is the processing element which is referred to as a neuron. The
neuron's function is basically analogous to its biological counterpart. It uses a set of
incoming connection values to calculate its output through an activation function. The
incoming connections on the left of the neuron connect the outputs of previous neurons to
the current neuron. The connections are analogous to the synapses of biological neurons.
Each network neuron may have many incoming and outgoing connections. These
connections are made with other neurons in the network. Each neuron produces only a
single output value. This output is seen as an input to the next neuron layer. Each
connection has an associated weight. These weights effectively modify the signal that
passes along this connection. The training, or learning process involves the modification
of these connection weights. Training is an iterative process which involves the
processing of a set of data by the network. The weight values are modified until the
network represents all of the data (within the training set) to some acceptable level of
erroi.

One of the most common functions used to represent the computational
characteristic of a single neuron is the sigmoid function:
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Yj = (4.1)

1 +e-D

where

N
Y i(WijXij-= OP). (4.2)

1=1131

The sigmoid function was used for the neurons in this work. The wij coefficients
are the weights. The value yj is the neuron output and the Xij values are the inputs. The 0j
coefficient is termed the bias, and is also adjusted during network training. The output of
the sigmoid function is shown in Figure 10 as a function of the parameter P3. Note that the
output of the sigmoid function is in the range of 0.0-1.0. This has important implications
in the formulation of training data, in particular the scaling of the training data to occur
within this range. This will be discuss in Section 4.2.5.

The process used when feed-forward, back-propagation networks are employed to
perform a mapping of a given set of information can be considered as a sequence of steps.
The first step is the designation of the input and desired output from the network in the
form of input/output vectors or pairs (IOP). The number of neurons and their connections
must be established. Finally the parameters used to describe each neuron must be
determined. The determination of these parameters can be expressed as an optimization
problem. The minimization of error between the network output and the desired network
output is termed network training, and will be discussed in the following section.

4.2 NETS

NETS36 was the neural network simulator program used for this research. It was
developed in the Artificial Intelligence Section of NASA's Johnson Space Center. The
stated purpose of NETS is:

"( 1) to provide a somewhat flexible system for manipulating a variety of neural
network configurations using the generalized delta back propagation learning method
and (2) to provide the general user community a means of learning about neural
network technology without the need for specialized hardware."'36

In the case of this research, NETS satisfied both of these purposes very well.

4.2.1 Back-propagation Training

Once a network configuration has been decided upon and a set of training data
generated, the process of network training begins. Training involves the modification of
the network coefficients (the weight and bias values) to obtain the desired mapping of
input to output which is based on the set of input/output pairs used as the training data.
This effectively involves a comparison of the desired and actual network mapping, and a
lowering of the level of error between the two. A user supplied error constraint specifies
the termination criterion for training. When the specified allowable error level is reached,
Mraining stops.

Back propagation uses a gradient descent technique to define the weights in the
network. The error between the current network output and the desired output is squared
to obtain a function that can be used to perform the gradient descent for weight
modification. The back-propagation description was developed by Hertz et a142. This
iterative algorithm provides a mechanism for changing the weights in any feed-forward
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network to learn a training set of input-output pairs. The weights can be binary (0/1) or
continuous valued. Continuous valued weights were used in this application. The addition
of a momentum term to the weight update equation can significantly improve the
characteristics of the gradient descent and improve the convergence rate. Additional
details of the back-propogation algorithm can be found in many texts on neural networks
or in Reference 8.

4.2.2 Learning Rate

The learning rate is simply a multiplier that is used as part of the weight changing
procedure of back propagation. The error thus relates not only the current accuracy of the
network, but the rate of change to be made to the weights during training. The larger the
error, the larger the change. Since back propagation only approximates a true gradient
descent, the learning rate is used to scale the degree of change made to the network so
that as close to a true gradient descent as possible is achieved. A large learning rate will
provide faster learning, but the error level will fluctuate greatly (as the mean error level
shows a decrease). For large learning rates, the network may be unable to achieve the
final desired level of error.

In order to improve training efficiency NETS incorporates a scaling factor for the
learning rate. Recent work43 has shown that training time can be reduced if the learning
rate is adjusted during the learning process. This is particularly true when error levels are
either very high or very low (as is typical at the beginning or ending of training). The
scaling factor is shown in Figure 11 as adapted from Reference 36. There is a sharp
increase in the scaling factor at both error extremes, but when the error is in the range of
0.5 the scaling factor is 1.0. The end result was that there was an increase in the learning
rate when the error was either large or small.

4.2.3 Delta Weight Constant

Rumelhart and McClelland44 describe a term that can be added to the weight
change calculation to make the training process more efficient. This factor is also known
as the momentum. The problem is that the gradient descent can be very slow and can
oscillate widely if the learning rate is small. The momentum is based on the last change
made to each weight. When a weight is changed, a part of the last weight change is also
added. Then the effective learning rate can be made larger without divergent oscillations
occurring. This scheme is implemented by giving a contribution from the previous
training iteration to each weight change. The momentum parameter ax must be between 0
and 1.0. A value of 0.9 was chosen in this work.

4.2.4 Neuron Bias

The bias coefficient does just that; it provides an offset or "bias." The bias values
allow for the representation of more involved and complex relationships in the data to be
mapped. There is a single bias value for each neuron. Figure 12 shows the effect that
various bias values have on the neuron activation function. Notice that the bias value
effectively "shifts" the sigmoid function output along the horizontal axis. The neuron bias
is also often referred to as the activation threshold. The bias is determined as part of the
network training.

4.2.5 Scaling of Input/Output Pairs

Until the training process has been completed, the neural network has no
information stored within it. Training data in the form of sets of input/output pairs are
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used. These input/output vector pairs are typically scaled to the range somewhat greater
than 0 and less than 1. This is due to the fact that the values of 0 and 1 are difficult to
obtain (the value of the derivative used in the back-propagation procedure being 0 at
these points). For most of the problems considered in this work the training data was
scaled in the range from 0.1 to 0.9.

If the design information to be mapped was continuous in nature, a linear scaling
was employed (in the range of 0.1 to 0.9) based on the minimum and maximum values in
the training data for the network output(s). As an example of the scaling procedure,
consider the case where the set of design information to be mapped by the neural network
has a maximum value of 250.0 lb and a minimum value of 150.0 lb. The 250.0 lb value is
scaled to 0.9 and the 150.0 lb value is scaled to 0.1 and all intermediate values are scaled
using a simple linear scaling based on the maximum and minimum values. This scaling
procedure was performed for all output data (if multiple network outputs were used). The
same type of scaling was also performed on all input data.

For the case of discrete valued design information, a different type of scaling on
the training data is performed. As for the input data, the values are set to either 0. 1 or 0.9
relative to the state of the discrete design variable. The discrete design variable
applications to be presented involve material selection, thus each design variable can be
one of several possible discrete values. To account for this, each design variable is
assigned a set of network inputs corresponding to the number of discrete states. If there
are four materials being considered for an element of the structure (four discrete states),
then four inputs to the network are associated with this design variable. For any given
training pair only one of these inputs will have a value of 0.9 -- that input corresponding
to the active discrete state (or material selection). The other inputs are set to values of 0.1.
If, in a material design problem, rod 1 is composed of material 3 (of four possible
choices), then the four inputs to the network associated with this design variable are (0.1,
0.1, 0.9, 0.1). A variation on this type of discrete variable scaling was used in the
composite wing skin application discussed later in the report. This is presented in more
detail at that time.

The development of the information required to provide the training data and the
selection of the format and scaling of this information has a large impact on the ability of
the neural network to effectively represent the relationship between the "input"
parameters or design variables and the "output" or measures of merit or performance.
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5. APPLICATION OF NEURAL NETWORKS TO PRELIMINARY
STRUCTURAL DESIGN

This section presents the methods which were developed to integrate the MDO
procedures with the capabilities of the artificial neural networks. The concept of recursive
learning is also introduced. The two optimization approaches taken to extract design
information from the neural networks - successive quadratic programming method and
simulated annealing, are then discussed. Finally, a specialized application is presented in
which the characteristic of "survivability" of the design is considered.

5.1 Mapping the Design Space

Once trained, the neural network weights and bias values were saved. The
network could then be used as a static entity, typically as a functional subroutine to
another program to either display the variation of output parameters as a function of the
input parameters or to identify regions in the design space of particular interest. No
modifications to the weights were made beyond the termination of training. In the case of
recursive learning, which will be discussed later in the report, the weight and bias values
were stored as static entities at each iteration after having been modified as the result of
the addition of new training data.

To illustrate a design space representation using neural networks, consider the
example of the five bar truss of Figure 13, which was also discussed in Section 1. The
truss is composed of five axial force rods, constrained at nodes 1 and 4, with the applied
loads shown. Consider as a possible design problem that one would allow the node 2
location to range over the 6 by 6 inch region shown. It would be desirable to quantify the
design space defined by the weight variation for all optimal designs within this region.
This could be used to determine if some portion of this design space has weight
characteristics that are "better" than other regions. Determining the trends in weight may
be as important as determining the single best design for this structure. This requires the
determination of a design space representation. Such a representation was obtained by
using an automated FSD procedure (mesh generation and design combined) with
constraints on tensile, compressive and buckling stress to generate a set of points in the
design space as described earlier. These points represent optimal designs for unique
geometries. A 61 x 61 grid of evenly spaced designs within the region were obtained
(3721 designs). Based on this data, the contour plot of Figure 14a was generated.

Figure 14b shows a contour plot obtained from data developed using a neural
network. The network was trained with 121 FSD truss designs distributed over the
allowable design space (an evenly distributed 11 x 11 grid). Once trained, the network
calculated the FSD truss weight based on a 61 x 61 grid of (x,y) coordinates for node 2.
The network output for weight was then contoured as was done in Figure 14a for a
similar grid composed solely of FSD designs. It is easily seen that the neural network has
been able to distinguish the major characteristic features of the design space using more
than an order of magnitude less information than that required to produce Figure 14a. It is
this ability of the neural networks to quantify, store and then provide a means for easy
recall that makes them particularly attractive for processing preliminary design
information.

5.2 Recursive Training of Neural Networks

The feed-forward networks employed in this study require training data to form a
design space representation. Because FEM and MDO procedures are typically
computationally expensive, attempting to minimize the amount of training data required
for an effective neural network representation must be considered. Training data
generation is the most computationally intensive part of the design procedure. To address
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this issue an automated finite element mesh generator and recursive learning procedure
were developed. The mesh generator was an extension of the original version of the
SWIFTOS preprocessor XPUT.

Given a small set of designs (a function of the design problem complexity), a
neural network was trained to approximate the design space of a given structural design
problem. Once trained, the neural network was interfaced with a math-programming
optimization program which was used to predict regions of the design space that were
added to the training set because of the desirable design characteristics associated with
those regions. The preprocessor generated new finite element models (and associated
MDO input data) appropriately based on the design space region (i.e., values of the
design variables). The sizes of the components of the specific models were designed to
provide additional "optimum" designs, and were then incorporated into the existing
training set. The neural network was then retrained with the new design information to
better represent these regions of the design space. The procedure was recursive in that the
sequence was repeated until it had been determined that the neural network representation
of the design space was refined enough for the problem under consideration.

A flowchart of the recursive training procedure is shown in Figure 15. The entire
procedure was implemented through a cross-compilation of FORTRAN and C code, and
the program was a stand-alone tool requiring minimal interaction with the user. The
neural network was incorporated into the analysis procedure so that the set of training
data was automatically updated as new information was generated. Training occurred
sequentially with the generation of data.

5.3 Design Information from Neural Networks

This section provides background on the procedures that were employed to search
the neural network design space representations so that improved designs could be
determined. Two procedures were employed. The first was a successive quadratic
programming method; this procedure was used to determine optimal configurational
designs for continuous valued design variables. The second optimization approach
employed was the simulated annealing algorithm. The simulated annealing algorithm has
a recognized utility for combinatorial optimization problems. In this study simulated
annealing was employed for the material system design problems where the design
variables were discrete valued.

5.3.1 Systematic Search - Nonlinear Programming

The implementation of the successive quadratic programming method to solve a
general nonlinear programming problem was based on a method developed by
Schittkowski4 5. The implementation of this program was taken from the subroutine
NCONF of the IMSL 46 1ibrary of mathematical subroutines. The method, based on the
iterative formulation and solution of quadratic programming subproblems, obtained
subproblems by using a quadratic approximation of the Lagrangian function and by
linearizing the constraints. The augmented Lagrange function was used as the merit
function. A finite difference method was used to estimate the necessary gradients in the
calculation. For the neural network implementation, a neural network output was
treated as the objective function, typically weight, and any other network output could be
used as a constraint on the optimization. For the cases considered, only upper and lower
bound constraints were considered on the optimization problems.

41



Initial Training
Data Generation

(FSD)

Neural Network Fully-Stressed
Training Design (FSD)

Further Refine Yes
the Optimization

Design Space? Otmzto

Figure 15. Flowchart of the Recursive Learning Procedure



5.3.2 Simulated Annealing - Discrete Design Variables

Conventional optimization methodologies, which are typically based on
sensitivity analysis and gradient-based search techniques, are not suitable for the discrete,
or combinatorial, optimization problem. One example of this would be determining the
material system for a candidate structural concept (from a discrete number of material
possibilities) to obtain a least weight material distribution satisfying all applicable
constraints on the design. As the number of combinations increases, the possibility of an
exhaustive search becomes prohibitively expensive and eventually impossible. Random
search techniques, which evaluate a limited set of possible combinations are useful for
only smaller combinatorial problems where the possibility of an exhaustive search is
reasonable. As the combinatorial size grows, the random search becomes less valuable
and inefficient. It is understandable then that optimization problems dealing with discrete
design variables, while often mathematically well defined, are typically difficult to solve
in practice. New, and efficient techniques to allow for the consideration of discrete design
variables are thus necessary.

Simulated annealing (SA), which is based on a strong analogy to the annealing
process in metallurgy, has been used effectively for combinatorial optimization
problems47 . SA typically requires large numbers of design iterations to obtain near
optimal solutions. Rather than using costly FEM analysis for the simulated annealing
procedure, neural networks were used as an effective medium for the approximation of
the design space of a given structural concept and set of material systems. Neural
networks provided the computational efficiency to perform these SA optimizations in an
expedient manner.

5.3.2.1 Basic Algorithm

Kirkpatric, Gelatt, and Vecchi 48(and independently Cerny49 ) provided the
foundation for applying annealing to combinatorial optimization problems. The basis of
simulated annealing can be traced to Metropolis50 . Simulated annealing has been used
effectively for such engineering applications as the optimal placement of modules on an
integrated circuit 51-5 3 and image processing 54 -56.

Most engineers are familiar with the annealing process as described in metallurgy;
a heat treatment in which a metal is subjected to high temperatures so as to soften the
material, and then recrystallized upon cooling. The process involves the heating, and then
a slow, controlled temperature decrease until the atoms arrange themselves in the ground
state of the solid. While at high temperature, the atoms are arranged randomly, but when
at the ground state (after slow cooling) the atoms are arranged in highly structured lattices
where the energy of the system is minimized. To ensure that the energy state is a
minimum (or near minimum), the initial temperature (randomness) must be high and the
cooling rate must be sufficiently slow.

The following is a summary of the simulated annealing description by Aarts and
Korst57 . The simulated annealing algorithm is based on Monte Carlo techniques and
generates a sequence of states of the design vector. Given a current design vector, i, with
associated objective function Ei, then a subsequent design vector j is generated by
applying a perturbation mechanism that transforms the current vector into the next by a
small distortion. The objective function of this vector is Ej. If the objective function
difference Ej-Ei is less than or equal to 0, the design vector j is accepted as the new
design vector. If the objective function difference is greater than 0, then the vector j is
accepted with a certain probability. This acceptance rule is termed the Metropolis
criterion. It is developed using the following expressions.
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M=er (5.1)

where

IF = (E-Ei) (5.2)
kB T

where T denotes the temperature of the "heat bath" and kB is a physical constant known
as the Boltzmann constant. The above exponential is evaluated, and the resulting value is
compared to a random number. The random number is selected from a uniform
distribution of random numbers in the internal (0,1). A value of the parameter M greater
than the random number results in an acceptance of the new design vector. The algorithm
associated with this acceptance rule is known as the Metropolis algorithm.

The Metropolis algorithm can be applied to generate a sequence of solutions of a
combinatorial optimization problem. The following analogies are made:

- Possible solutions in a combinatorial optimization problem are equivalent to states
of a system.
- The objective function of a solution, f(i), is equivalent to the energy of a state, El.

These conditions are typically implemented by,

S[1 iff(j) < f(i)

Pj{acceptj} )

e( C if f(j) > f(i) (5.3)

where i and j are two solutions of a combinatorial optimization problem with objective
functions f(i) and f(j), respectively. The control parameter, represented by "c" in Eq. 5.3,
will be discussed shortly. The Metropolis algorithm involves nothing more than a
transition from state i to state j consisting of the following two steps:

(1) application of the generation mechanism,
(2) application of the acceptance criterion.

As shown in Eq. 5.3, if ffj) < f(i), design vector j is accepted as the new design vector.
However, if f(j) > f(i), vector j may still be accepted based on a comparison between the
Metropolis criterion and a uniformly distributed random number on the interval (0,1). If
the Metropolis criterion provides a value greater than the random number, design vector j
is accepted as the new design vector. If the Metropolis criterion value is less than the
random number, the perturbation made to design vector i is eliminated, and a new
perturbation to design vector i is applied.

For a given application of the simulated annealing algorithm, a generation
mechanism appropriate for the optimization problem, as well as a control parameter
schedule, must be determined. These issues will be discussed in the following Sections,
and this is followed by a simple SA demonstration using the five bar truss material design
example discussed in the Introduction.

5.3.2.2 Generation Mechanism

As mentioned previously, the generation mechanism defines how the discrete
design vector was perturbed between consecutive iterations of the simulated annealing
algorithm. There were two concerns when selecting the generation mechanism:
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(1) representing any physical behavior that might be characteristic of the discrete
phenomena being modeled, and

(2) creating an efficient mechanism from the standpoint of the simulated annealing
algorithm's execution.

In the latter case, it would be advantageous to reduce the number of simulated annealing
iterations to as few as possible, while still obtaining an objective function value close to
the global minimum. The modifications and re-evaluations of the design vector were the
most expensive portion of the simulated annealing algorithm. It was thus desirable to
make this process as efficient as possible. The generation mechanism is usually chosen
so that the new solutions can be obtained from current ones by simple rearrangements
that can be computed rapidly, for instance permutations, swapping, and inversions. It is
preferred that calculation of the objective function be done incrementally, taking into
account only the differences resulting from the local rearrangements. The generation
mechanism was also likely to be "time-dependent," so that the mechanism would change
as the number of iterations increased (the mechanism will cause "smaller" modifications).
This was meant to better represent the cooling process, and in effect caused the
optimization to slowly settle into the global minimum. For the case of neural networks,
the objective function computation was quite efficient, and the need for an involved
generation mechanism was greatly reduced.

The simulated annealing implementations for this work employed only a simple
random generation mechanism. The mechanism involved the selection of a random
subset of the design variables. These design variables were then perturbed in a random
fashion. A new value was selected at random for each of these design variables. The
objective function was then recalculated. For the ten bar truss material design example
(presented in the following section) a single rod's material selection was modified at each
SA iteration. For the ACOSS II example, five rods had their material selections change at
each SA iteration. These changes involved the selection of one or five rods at random
(from the entire set of rods for the particular example), and then the assignment of a new
material for the rod(s). The newly assigned material was also selected at random from the
four material possibilities.

5.3.2.3 Control Parameter

The control parameter, denoted by "c" in Eq. 5.3 and analogous to the product of
kBT in Eq. 5.2, effectively modifies the acceptance criteria. Typically, careful planning of
the control parameter schedule was necessary to minimize the number of simulated
annealing algorithm iterations. The control parameter had some initial value at the start of
the annealing process, and was then reduced in magnitude as the annealing process
proceeded. In practice the control parameter could be a function of the current generation
mechanism change (accounting for a local change in the design variable vector) as well as
the SA iteration number. This was done again for efficiency.

Because of the efficiency of the neural network representation, a more involved
control factor schedule was not deemed necessary for this work. The control factor
schedule employed for all the simulated annealing optimization applications is shown in
Figure 16.

The control parameter schedule (which was a function of the iteration number N)
was defined by the equations:

c = 5.00E-03 (N < 100) (5.4)

c = A*NB (100 < N < 5000) (5.5)

where A=200.0 and B=-2.2
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This control schedule was determined through a series of numerical experiments
where modifications were made to the two constants A and B of Eq. 5.5 until adequate
convergence of the SA algorithm was achieved for the 10 bar truss example. Initially it
was found that using the actual iteration number of the simulated annealing algorithm
provided good convergence. Further investigation showed a marked improvement in
convergence was achieved if the acceptance number was substituted in its place. The
acceptance number represents the number of updates (or modifications) that have been
made to the discrete design variable vector. An update occurs when either of the
acceptance criteria of Equation 5.3 were satisfied.

Figure 17 shows the relationship between the objective function change and the
control factor value in the Metropolis criterion. This plot was generated from a single
ACOSS U SA optimization. There were 549 occurrences during the 10,000 SA iterations
where an increase in the objective function was accepted (602 cases where a decrease in
the objective function was accepted). The allowable increases in the objective function
decrease dramatically as the control factor is reduced. The control factor is a function of
the acceptance number; the lowest value of "c" for this case was thus 200.0(549+602)-2.2
= 3.69(10-5).

A simple example to illustrate the results obtained from the simulated annealing
procedure was developed using the five bar truss of Figure 13. Two materials were
considered for this example (refer to Table 1). A neural network was trained with the
weights of the optimal designs for all 32 possible material combinations. The design
space as represented by the neural network was searched by the simulated annealing
procedure. The two parameters under the users control in the SA procedure (the control
factor and generation mechanism) were varied so that the effect on the SA procedure
could be noted. For each case investigated, the SA procedure was executed ten times,
each time for a maximum of just ten iterations. The weight values shown in the Figures
18-21 are the actual neural network output values (which are in the range of 0.1 to 0.9).
At the start of the SA procedure, initial weights (as shown in the figures) were obtained
from a design where materials were randomly assigned to the five rods. The final weight
values represent the weight of the last design accepted by the simulated annealing
algorithm,.

Figure 18 shows the resulting designs obtained when the control factor was
constant and equal to 0.02 and the generation mechanism involved the random selection
of one of the five rods for a material change. The SA procedure was able to identify the
least weight design for six of the ten designs. In every case, the procedure resulted in
either a weight reduction or the initial design. In Figure 19, the control factor constant
was increased to 0.2. This effectively allowed the acceptance of a larger number of
increases in the objective function. This was reflected by the final designs, none of which
were the least weight design. In fact, for designs 5, 6, and 8 the final objective function
was actually larger than the initial weight.

Figure 20 shows the results obtained for a constant control factor of 0.02, but with
a generation mechanism that changed the material for three randomly selected rods at
each iteration. Six out of the ten designs were the least weight material system. Also, all
the final designs are either less than or equal in weight to the initial designs. Figure 21
shows the results obtained from a control factor of 0.2 and the generation mechanism that
modifies the materials of three rods at each iteration. Only one of the final designs is
indeed a least weight design. In two cases, heavier designs are obtained.

The results for this simple example indicate that the value of 0.2 for the control
factor was too large, with little likelihood of obtaining the least weight design evident for
this particular example. If the value of C was too small, it would force the design to a
local minimum, from which it cannot "escape" without an accepted increase in the
objective function (unfortunately, this simple example did not exhibit this behavior). The
value of 0.02 appeared more promising for this example, since the minimum design was
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selected the majority of the time. The number of rods considered by the generation
mechanism seemed to have no noticeable effect on the results. The control factor and
generation mechanism employed for this example could not be any simpler--constant
values for each.

With the experience and insight gained with this simple example the more
detailed discrete design variable problems presented in the following sections were
considered.

5.4 Design for Survivability

The applications of multidisciplinary optimization and neural networks to the
preliminary structural design problem as presented earlier in this section were rather
generic in nature. No special design criteria was established and the overall purpose was
to develop a method for quantifying the design space for a structural concept. Another
potential application was considered as part of this study which had a very special
purpose. The intention was to determine if one could integrate the concept of design for
damage tolerance or survivability into the framework which had been established. It
should be emphasized that this was a preliminary investigation of this concept and that
additional efforts would be required in this area to fully exploit the potential of this
approach.

The need to incorporate damage tolerance criteria into the design of aerospace
structures has been recognized for many years. With the advent of multidisciplinary
design optimization (MDO) and finite element analysis (FEA), structural design which
takes into account possible damage conditions as simply another design constraint is a
possibility. The goal of such a design would be to achieve a least-weight material
distribution for the structural components so that the constraints on stress, displacement,
aeroelastic phenomena, and characteristic natural frequencies, among others, are satisfied
for the undamaged structure as well as all relevant damaged conditions.

Current MDO packages, while providing a powerful design tool, are typically
limited to the design of a fixed geometry finite element model, where the applied
loadings, and materials are also fixed. The design resulting from such an optimization
procedure represents only a point in the feasible design space for the candidate structural
concept. Work has been done in the area of survivable and fail-safe design which
employs multidisciplinary optimization58 -6. These approaches are applied to fixed
geometry/material finite element models, so that an understanding of the design space to
model variations (topology, materials, configuration geometry, etc.) was not necessarily
gained.

In the current research, neural networks were applied to the problem of damage
tolerant design through two distinctly different approaches. The first approach provided a
mapping of a given structure's design space. The design space was composed of optimal
designs based on various structural configurations and anticipated damage conditions.
Optimal survivable designs were defined as least weight structures designed to meet
stress, displacement, and other constraints deemed appropriate for the undamaged as well
as all damaged structural conditions considered. The design space representation could
then be used to define candidate structural configurations which yield the most desirable
design characteristics.

In the second approach, a mapping of the damaged structural characteristics was
obtained for a fixed structural configuration. The neural network was then used to predict
structural behavior for any damage condition so that information about critical damage
conditions could be developed. These damage conditions could then be accounted for in
the design of the structure.

The application of neural networks to the design of damage tolerant or survivable
structures employed in this study involves the mapping of a selected portion of the design
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space of a given family of structural configurations (or their anticipated damage
conditions). Once the design information has been "stored" in the neural network it then
becomes a simple matter to extract the trends in optimal designs for a given set of
structures. This can allow for the determination of the most desirable configuration to
meet a set of design objectives. Note that the final configuration selected is often a
significant improvement over the "best" configuration available in the training data for
the network. This indicates an important extrapolation capability which is provided by the
neural network. The prediction of structural behavior to previously unanalyzed damage
conditions is also possible. These concepts are then readily applicable to a diverse set of
design problems.

Figure 22 presents a flowchart for the damage tolerant design procedure used for
the 3-D truss structures considered in this report. An initial analysis was performed on the
undamaged structure, and then on all damage conditions under consideration. The most
violated constraint (i.e. element stress level) from all the damage conditions (and the
undamaged condition) was retained and used to drive the FSD design. This procedure
was performed in an iterative fashion until all applicable stress constraints were satisfied
(within ±1% of the stress allowable) or a minimum gauge constraint was reached. The
applicable stress constraints were tensile allowable, compressive allowable and a local
buckling constraint. This design procedure was repeated for all configurational
geometries which were to be included in the neural network training data set. The
procedure required approximately 20 iterations to obtain a converged solution, where
each iteration involves an analysis of the undamaged as well as all damaged trusses. The
procedure was robust in that convergence was always achieved, and the final designs
were not affected by the initial rod areas.

For the wing-box example, an optimal baseline design was found using ASTROS.
A damage criteria was developed, and the optimal baseline was then damaged (through
the removal of specified finite elements) and reanalyzed to provide information on the
characteristics of the damaged structure. The characteristics considered in this study were
flutter speed and natural frequencies. The results of these analyses were used to provide
training data for the neural network. Once trained, the neural network was used as a very
efficient prediction tool for all possible damage conditions which were described by the
previously used damage criteria.

Other significant aspects of this neural network approach to design are its
modularity and relative computational simplicity. A neural network calculation was
orders of magnitude faster than either of the finite element design procedures employed
in the examples. Though a recursive approach was not taken for the damage tolerance
design studies it is feasible that this could be used to help reduce the "cost" in developing
the design space definition for the damage tolerant designs.
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6. PRELIMINARY DESIGN STUDIES -
MODELS AND METHODS

A number of different approaches to the use of neural networks in
preliminary structural design have been examined. In each case the emphasis has
been to use the neural network to provide a quantitative description of the design
space in a region of interest. These cases are distinguished by the nature of the
design variables under consideration. The first of these groups of design studies
involves continuous design variables. This variable type is illustrated through a
series of configurational designs. For each of these cases the geometry of the finite
element models were modified during nhe design. For all of the design studies
involving continuous design variables, the automated fully-stressed design procedure
from SWIFTOS was used.

The second group of design studies involve discrete design variables,
illustrated through material system optimization. For this group of design - .",ies,
ASTROS was used. In the third group of design studies, a particular design
condition was examined in some detail. A preliminary assessment of the use of
neural networks to assist in damage tolerant design was conducted. For these
applications both ASTROS and SWIFTOS were used as the basic source of design
information. The following sections will provide a detailed description of the finite
element models, design constraints, and the neural networks that have been
considered for the design problems.

6.1 Configurational Design - Continuous Design Variables

Configurational design involved the determination of structural geometries
that improved system performance or reduced weight. These variations in geometry
were modeled by allowing certain nodes within the finite element mesh to have a
range of acceptable values. The fully-stressed design procedure from SWIFTOS
provided least-weight designs for each geometry considered. These designs were
then employed as training data for the neural network. The neural network
'4Yfectively performed a design space mapping for the configurational design
. ariables under consideration. Once this mapping was obtained, the neural network
was used as a powerful and flexible design tool.

Two eximples were used to study the configurational design problem. The
first was the design of a ten bar truss, where three nodes were allowed to have a
range of possibie values. The neural network design space representation was then
employed in an optimization study where minimum weight was considered as the
objective function. The second design problem involved a three spar wing-box,
where the spar locations were considered as the design variables. In this study, the
neural network representation of the design space was again used in an optimization
study. Weight, natural frequency, and tip displacement were treated independently as
the objective functions for this design study.

6.1.1 Ten BarTruss

This study involved the configurational design of a planar truss. The truss,
shown in Figure 23, was composed of ten axial force rods. The nodal coordinates of
nodes 2, 4, and 5 of the finite element model were considered to be the
configurational design variables. These nodal coordinates were constrained by the
regions shown in Figure 23. A local Euler buckling constraint was also imposed (a
solid circular cross section was assumed). It was desired to determine how the
variations in these nodal coordinates would affect the optimal weight for the truss for
a fixed set of applied loads.
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The trained neural network was employed as a subroutine to a math-
programming optimization routine so that the least weight truss geometry could be
extracted from the neural network design space representation. Table 2 provides a
description of the finite element model and the design conditions imposed to
generate the network training data.

In order to make a preliminary evaluation of the influence of the hidden
layer geometry on the design space representations, three different network hidden
layer geometries were considered. These networks had 20, 40, and 80 neurons in the
single hidden layer. Also, training data sets composed of 50, 100, 200, 300, 400, and
500 designs were used to evaluate network extrapolation ability as a function of the
amount of available design information. Finally, two different levels of training error
were considered, E= 0.02 and 0.01, to note the effect that training error had on
extrapolation ability. The training error measure, E, is the difference between the
actual and desired output (using the scaled-output parameter), which was then used
as the termination criteria for network training. Network extrapolation ability was
determined by comparing a set of 500 unique, randomly selected designs (not
present in the original training data) with the network predictions for these designs.
Maximum and RMS error values were used for this comparison.

This problem was formulated to provide a simple illustration of the major
aspects of the neural network approach for design space representation and for the
extraction of improved designs from the neural network. Unlike the five bar truss
example presented earlier, this is a "six-dimensional" design space and both visual
interpretation and presentation of the design space are not possible. The concepts
described for this problem will lay the groundwork for discussions of the more
involved design problems.

6.1.2 Three Spar Wing-box

The second configurational design problem was intended to represent a more
complicated and practical design, that of a rectangular planform wing. The wing
used a NACA 4412 airfoil, three spars (each with spar caps on the upper and lower
surfaces), and ten ribs. All chordwise spar locations were considered as design
variables. It was desired to note the influence that the spar locations had on a set of
primary characteristics for the wing structure. The leading edge spar was allowed to
vary between 15-30%C(local chord), the main spar was allowed to vary between 35-
55%C, and the trailing edge spar was allowed to vary between 60-75%C. Spar
location ranges are shown in Figure 24. It was not anticipated that the wing
characteristics would be strong functions of the spar locations due to airfoil cross-
section geometry but this case illustrates the manner in which other considerations
can be included in the preliminary design process. If other conditions such as
manufacturing, assembly, survivability, access, etc. were to be considered at this
point in the process, the influence of internal geometry could be important and that
influence could be described using the neural network representation of the design
space.

The wing had a constant chord of 60 in., and a semi-span of 216 inches.
Aluminum material properties were used for all elements in the model. A single load
case was considered; a pressure load with a resultant lift equivalent to a +5g pull-up
condition. The finite element model of the three spar wing-box is shown in
schematic form in Figure 25.

Table 3 provides a summary of the finite element model information used for
this application. Three different nt) works with different hidden layer geometries
were considered. The hidden layers were composed of 20, 40, and 80 neurons each.
Three different training sets were also used, composed of 20, 50, and 100 wing
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Table 2. Finite Element Model Parameters for Ten Bar Truss Configuration Design

- 20, and 15 ksi stress allowables for tension and compression
- E=10.0(10 6 ) psi, v=0.3, p=0.1 lb/in 3

- All rods are designed.
- FSD is employed- stress constraints only
- Initial rod area 0.1 in2 , minimum gauge 0.01 in2

- Optimality is satisfied when elements are within 5% of the von Mises criteria
- A Euler buckling constraint (circular cross-section) is employed.
- A single load case is considered.
- Nodes 2, 4, and 5 are allowed to vary in position

15-30% 35-55% 60-75% Percent Chord

Figure 24. Cross Section Schematic of Three Spar Wing, Ranges of Possible Spar
Locations
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designs. No comparisons were made between various training error levels (E--0.02
was used throughout this particular study).

The goal of this study was to perform a design space mapping of the optimal
weight, tip displacement, and first three natural frequencies as a function of the spar
locations. Comparisons were made of the network's ability to extrapolate from the
given design information based on the network geometry and training data level.
Also, the neural network design space representations were employed as subroutines
to a math-programming optimization procedure so that sets of improved designs
could be obtained. These designs used weight, natural frequency and tip
displacement independently as the objective functions in order to further evaluate the
utility of the neural network approach to extract improved designs. An improved
design was considered to be one in which the objective function was lower than the
"best" design present in the neural network training data.

6.2 Configurational Design Using Recursive Learning

In order to demonstrate the recursive network learning approach as applied to
structural design two examples were investigated. First, a ten bar truss was
considered for a configurational optimal design. A single node of the truss was
allowed to range in location and the weight trends of the fully-stressed designs were
noted. For this example a two-dimensional design space was developed so that a
direct visual representation of the recursive process could be presented.

Second, a configurational design of a four spar subsonic light aircraft wing-
box was considered. Spar locations were considered as the design variables for this
"example, and optimal weight, tip displacement, and natural frequency were treated
independently as the objective functions and constraints. Variations in the network
hidden layer geometry were not considered.

6.2.1 Ten Bar Truss

The first example was the configurational design of the ubiquitous ten bar
truss shown schematically in Figure 26 along with the applied nodal loads. Table 4
provides a description of the finite element model information used for this
application. This case provided a simple illustration of the recursive learning
procedure. A single nodal coordinate was considered as the design variable of
interest. In order to generate training data for the neural networks, both the
SWIFTOS FSD procedure and the automated finite element mesh generator were
used. This allowed for the automated modeling and analysis of each truss. SWIFTOS
used constraints on tensile and compressive stress as well as buckling stress for the
axial force rods. Figure 26 also shows the allowable limits for the node 2 location.
The goal was to determine the design space defined by the least weight truss designs
as a function of the location of node 2.

This example used a 2-80-80-1 network (2 inputs, 80 neurons in the first
hidden layer, 80 neurons in the second hidden layer, and 1 output neuron).
Preliminary studies indicated that this more involved network configuration with a
second hidden layer helped to achieve an adequate convergence rate during network
training (adequate convergence being defined as a continuous reduction in error
down to the termination error level, within a reasonable amount of time). Acceptable
convergence characteristics were important for the recursive procedure since, at each
retraining cycle, the back-propagation training procedure was applied a fixed number
of iterations (for this study, 10,000 iterations). If the training error satisfied the
specified limit before the 10,000th iteration, training was concluded. If this did not
occur, training was terminated after 10,000 iterations regardless of the error value.
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Table 4. Finite Element Model Parameters for Ten Bar Truss Recursive Training Design

Study

- 20, and 15 ksi stress allowables for tension and compression, respectively for
mild aluminum

- E=10.0(10 6) psi, v--0.3, p--0.1 lb/in 3

- All rods are designed.
- FSD is employed- stress constraints only
- Starting rod area 0.1 in2, minimum gauge 0.01 in2

- Optimality is satisfied when elements are within 5% of the von Mises criteria
- A Euler buckling constraint (circular cross-section) is employed.
- A single load case is considered
- Node 2 was allowed to vary in postion
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This allowed for a "hands-off' approach for this study but a more active monitoring
of the recursive procedure would be preferred for a practical application.

An initial training set of ten randomly selected designs was used to start the
procedure. At each iteration in the recursive procedure two new designs were
generated; one from the neural network predicted least weight design and the second
selected at random within the design space. The incorporation of a random design
helped to further refine the overall design space and also helped to reduce the
likelihood of the recursive procedure isolating and refining a local minimum in lieu
of a global minimum. The selection of a mechanism for the addition of candidate
designs to the training set is an issue of continued interest and is probably problem
dependent.

Graphical presentation of the neural network representation of the design
space was accomplished by developing contour plots from data developed by
propagating a 100 by 100 set of evenly spaced, allowable nodal coordinates through
the neural networks. This particular problem was selected to allow for the graphical
presentation of a two-dimensional design space.

6.2.2 Four Spar Wing-box

The second example involves the configurational design of a four spar wing-
box where the spar locations were considered the design variables and design
weight, tip displacement, and natural frequency were independently considered as
the objective functions. In order to generate training data for the neural networks,
SWIFTOS and the automated finite element mesh generator were used. For the
wing-boxes SWIFTOS employed a von Mises constraint for each of the planar
elements. Subparametric quadrilateral membranes were used to model the skin and
the spar and rib webs. No buckling constraints were imposed on the wing-boxes.

The wing-box representation, Figure 27, for the constant chord wing was
comparable to a model which might be used at the early stages of preliminary
design. It was composed of 80 axial force rods representing the spar caps and 130
subparametric quadrilateral membranes for the skin, spar webs, and rib membranes.
Table 5 provides additional details on the finite element model and associated
parameters. For this example, it was desired to determine the behavior of the wing-
box due to variations in the chordwise position of the four spars. The leading edge
spar was allowed to vary between 15-30% C, the second spar was allowed to vary
between 35-45%C, the third spar was allowed to vary between 50-60%C, and the
trailing edge spar was allowed to vary between 65-75%C. A perspective on the
complexity of this problem can be achieved if one considers that even if allowable
designs are required to have only integer values of the spar locations (i.e. 18%, 41%,
52%, 74% would represent a single design), this design space would have over
21,000 candidate designs.

A single static loading case was used to define the basic design requirement.
The loading was specified as a non-uniform pressure distribution over the planform
of the wing. This produced a different set of nodal loads for every finite element
mesh geometry considered.

The neural network used for this study had 4 inputs (the 4 spar locations), a
single hidden layer composed of 40 nodes, and an output layer composed of 5
neurons. The five outputs were the design weight (as determined from the FSD
procedure for the single static load), the corresponding tip deflection under static
load, and the first, second, and third natural frequencies.

Since the goal of the study was not to develop a single point design but to
provide a means for representing the concept's design space a recursive procedure
was required which would help provide detail in the more critical regions of the
design space. The design space cannot be "visualized" in as straightforward a
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Figure 27. Schematic of Four Spar Wing-Box Used for Recursive Training Study

Table 5. Finite Element Model Parameters for Four Spar Wing-Box Recursive Training
Design Study

25.0, 15.0, and 12.0 ksi stress allowables for tension, compression, and shear
respectively for 2014-T6 aluminum.

E=fl0.5(10 6) psi, v=0.3, p=0.1 lb/in3

All elements are designed using FSD (membrane minimum gauge of 0.01 in., rod
area minimum gauge of 0.01 in2).

Optimality is satisfied when elements are within 5% of the von Mises criteria.
No buckling constraints are imposed.
A pressure load of 7776.0 lb with a center of pressure at 36.7% C(+5g pull-up

condition).
Spar I ranges from 15-30% C, spar 2 ranges from 35-45% C, spar 3 ranges from

50-60% C, and spar 4 ranges from 65-75%C.
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manner as the previous example. The network was trained with a baseline set of data
composed of only two designs. These two designs were selected at random from a
subset of 32 designs uniformly distributed over the allowable design space.

The five network outputs were used in a cyclic fashion as independent
objective functions to drive the recursive training. Tip displacement was considered
as the first objective function, followed by weight and then the three natural
frequencies. The subsequent optimization provided a new candidate configuration
which was designed using the FSD procedure and added to the training set. After the
third natural frequency was used, the weight again became the objective function.
Twenty-five iterations were performed, so that each network output was used as the
objective function five times. Each of the 25 optimal design predictions obtained
from the neural network was used as additional training data to further refine the
design space. A comparison between the recursively predicted optimum values and
two other network predictions was also performed. In the first case 27 randomly
selected candidate designs were used, this is the same size as the training set
developed using the recursive procedure. In the second case 100 randomly selected
designs were used in the training set.

6.3 Material Selection - Discrete Design Variables

Discrete design variables must be considered in a fashion different from
continuous design variables. In particular, gradient-based search techniques cannot
be used to identify optimal designs involving these variables. Unconventional
approaches, such as genetic algorithms or the simulated annealing algorithm have
therefore been developed. To investigate the utility of the neural network approach
for discrete design variables two different design studies were considered. The first
problem was the simple planar ten bar truss in which four isotropic materials were
considered for each of the ten bars. The second example was an ACOSS II space
truss, where four materials were considered for each of the 113 rod elements.
ASTROS was used to generate the network training data. Recursive learning was not
attempted for the discrete variable design problems.

To implement the simulated annealing algorithm a control parameter
schedule and generation mechanism were determined. The control parameter
schedule determines how the control parameter (used for the acceptance criteria)
varies as the simulated annealing algorithm iterations progressed. The complexity of
the schedule reflects the complexity of the combinatorial optimization problem. In
the examples presented here, the simple power function relationship shown in Figure
28 was used as the control parameter schedule.

The development of this control parameter schedule was described in Section
5.3.2.3. Another implementation issue deals with determining an appropriate
generation mechanism for the design problem. The generation mechanism describes
the manner in which the discrete design vector was perturbed between successive
iterations. As with the control parameter schedule, the generation mechanism's
complexity will reflect the complexity of the combinatorial optimization problem.
Initially, a mechanism that involved the random selection of a number of elements
along with a random material change for the discrete values of these elements was
performed. The number of elements selected for material change was initially
variable; starting as a large percentage of the total design variables, and slowly
decreasing as the number of iterations increased. This was further modified when the
new control parameter schedule was adopted. The new generation mechanism
involved a fixed number of elements being perturbed at random. In the case of the
ten bar truss, two elements were selected at random, and then their material values
were assigned a random value. For the ACOSS II design, five rods were selected at
random, each with a randomly assigned material value. Improved convergence was
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noted over the original generation mechanism, even though the new mechanisms
were considerably simpler.

Because of the efficiency of the neural network, 10-3 CpU seconds per
iteration were required (based on a DECstation 3100) for the neural network
approximate solution to be generated, it was not critical that the control parameter
schedule and generation mechanism be "efficient"; many thousands of SA iterations
could be performed in a short period, countering the need for efficiency in the
generation mechanisms. As the neural network complexity increased (i.e., more
hidden layers or more neurons per hidden layer), computational times would rise. An
increase in network complexity may require the development of more efficient
schedules.

6.3.1 Ten Bar Truss

The first example discrete design variable problem was the ten bar truss,
shown in Figure 29. This simple model was employed to determine if the neural
networks could effectively represent the discrete design space, and if so, to find the
distribution of material types for the truss that would minimize the truss design
weight. Four isotropic materials were considered for each of the ten rods resulting in
410 possible material configurations.

Table 6 provides a description of the finite element model information used
for this example. The properties for the materials considered for the material system
are fisted in Table 7. Two load conditions were considered and an upper bound
natural frequency constraint on the first mode of 30 Hz was applied. Designs were
obtained using ASTROS. No buckling constraints were imposed.

Four different neural networks were considered to determine what effect, if
any, neural network geometry would have on the results for this design space
composed of discrete design variables. Each of the four had 40 inputs, and output
layers with 1 neuron. The networks had a single hidden layer composed of 20, 40,
80, or 120 neurons. Four different sets of training data were also used, composed of
20, 50, 100, and 200 input/output pairs in order to make determinations regarding
network accuracy, learning times, and extrapolation ability based on training data
detail.

The material vectors were developed in the following manner: each rod
element had the possibility of being composed of one of the four materials shown in
Table 7, consequently there were four network inputs for each rod element. Only one
of these four inputs had a value of 0.9 and that input corresponded to the "active"
material assignment. The other three inputs had a value of 0.1. Figure 30 describes
the initial generation mechanism employed for this design study. This figure is for
illustrative purposes only; it is meant to describe one approach to a generation
mechanism which was considered in this study. This figure indicates the number of
rods that were allowed to change material properties in any given iteration. Rods and
corresponding material changes were selected at random. Note that the variations
made to the design vector were continually reduced as the design approached the
global minimum. The generation mechanism that was actually employed for the
results presented herein was much simpler since only two rods were allowed to vary
at any given iteration. This extremely simple generation mechanism yielded
excellent convergence results as is discussed in the following section.

6.3.2 ACOSS II

The second discrete design variable example is an ACOSS II space truss,
developed by the Charles Stark Draper Laboratory 18 . The finite element model,
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Table 6. Finite Element Model Parameters for Ten Bar Truss Material System Design

Study

Four different materials are considered
E=10.0(10 6) psi, v=0.3, p1=0.1 lb/in 3

All rods are designed.
ASTROS - math-programming is employed- stress constraints and a natural

frequency constraint (1st freq.<30 Hz)
Starting rod area 0.5 in2, minimum gauge 0.01 in2

Optimality is satisfied wl',en all applicable constraints are met and the change in
the objective function is less than .025% for two consecutive iterations

No buckling constraints are imposed (none available)
Two different load cases are considered
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Table 7. Material Properties for Ten Bar Truss Design

Material Modulus Density Tensile Compressive

(psi) (lb/in 3 ) Allowable Allowable
(psi) (SiO

1) 2024-T3 10.7(106) .100 20.(103) 15.(103)

2) 7075-T6 10.5(106) .101 36.(103) 37.(103)

3) Steel 28.5(106) .283 85.(103) 71.(103)

4)Titanium 17.0(106) .164 75(103) 75.(103)
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Figure 30. Generation Mechanism Schedule for the Ten Bar Truss
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shown in Figure 31, was composed of 33 nodes (A) degrees of freedom), 113 axial
force rods and 18 concentrated (non-struc:ural) masses totaling 11,217.2 lb. As in
the fist example, it was desired to determine the material configuration that would
provide the least weight design for the truss (subject to the frequency constraints).
ASTROS was used to generate the design information for this study.

Design constraints were placed on natural frequency only; a lower bound
constraint of 2.0 Hz on the first mode and 3.0 Hz on the second mode were used.
Four materials were considered; these materials are listed in Table 8. Each of the 113
rods could be composed of any one of the four materials, resulting in 4113 possible
material combinations. The material vector (used for neural network input) was
developed in the same manner as for the ten bar truss case. That is, there were four
network inputs corresponding to each of the 113 rods, and only one of the four
inputs had a value of 0.9, the other three had values of 0.1.

Parameters for the ACOSSII finite element model are given in Table 9. As
in the ten bar truss problem, the initial generation mechanism had a gradually
decaying number of rods which were perturbed between successive iterations. A
simpler generation mechanism was substituted. This mechanism had only a constant
number of rods, five, being perturbed between iterations. Improved convergence
characteristics were noted for this mechanism and the results presented in this report
used this generation mechanism.

Three different network geometries were considered, involving 10, 40, and
100 neurons in the hidden layers. Training sets of 50, 100, 300, and 500 ASTROS
designs were used. Determining the effects that hidden layer geometry and IOP size
had on the neural network's representation of the design space were the primary
objectives of this study.

6.3.3 Multi-Spar Composite Wing

The final discrete design variable example was an ir, -rmediate complexity
wing, again taken from the ASTROS Applications Manual3 . In comparison with the
other design studies this was rather superficial and is included to indicate the
potential of other types of applications which could occur during the preliminary
structural design process. In this application, the laminae orientations for the
composite wing skin could have been either a continuous or a discrete design
variable. As indicated below this required the de, 'lopment of an alternative method
for the design variable description. The selection of orientation as a discrete design
variable might be that indicative of a design decision driven by a manufacturing
consideration.

A schematic of the finite element model of the wing is shown in Figure 32
The finite element model was composed of 39 rods, 55 shear panels (used to model
the sub-structure), 62 quadrilateral elements and 2 triangular elements to model the
composite skins. The element used to model the skins was an isoparametric
membrane-bending element whose characteristics are described in Reference 3. The
substructure composed of the shear panel spar and rib webs and connecting posts
were made of isotropic material and the skins were composite. Material properties
for this finite element representation are presented in Table 10.

Each skin element was composed of four orthotropic laminae of equal
thickness. The orientation of the four laminae within each skin element were used as
the discrete design variables in the neural network design study. It was desired to
determine the four lamina orientations that would provide the lowest first natural
frequency for the structure which had been "optimized" to achieve least weight and
satisfy a number of static and dynamic constraints. ASTROS was used to provide the
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Figure 31. Schematic of ACOSS II Space Truss Finite Element Model (Adapted from
Reference 3)
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Table 8. Material Properties for ACOSS II Truss Design

Material Modulus (psi) Poisson's Ratio Densit' (lb/in3)

G iite/epoxy 18.5(106) 0.28 0.0547

F ,/epoxy 32.5(106) 0.23 0.0723

Graphite/epoxy type I 30.9(106) 0.28 0.0576

Graphite/epoxy type II 21.5(106) 0.28 0.0526

Table 9. Finite Element Model Parameters for ACOSS II Truss Material System Design

Study

Four different materials are considered
All rods are designed.
ASTROS - math-programming is employed- two natural frequency constraints

only(lst freq.< 2 Hz, 2nd freq. < 3 Hz)
Starting rod area 0.5 in 2, minimum gauge 0.01 in 2

Optimality is satisfied when the frequency constraints are met and the change in
the objective function is less than .025% for two consecutive iterations

No buckling constraints are imposed (none available).
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Table 10. Material properties for the ICW design

isotropic material Orthotropic material

E= 10.5(106) psi El= 18.5(106) psi

v= 0.30 E2= 1.6(106) psi

p= 0.10 lb./in 3  G12= 0.65(106)

tmin= 0.02 in V12= 0.25

oT <67 ksi p= 0.055 lbin3

Ocy• 5 7 ksi tmin= 0.00525

rxy< 39 ksi laxl - 115 ksi

___yI< 115 ksi
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"optimum" designs for a given set of ply orientations. For a given ASTROS design
the ply orientations were the same for all of the skin elements.

Each of the four lamina orientations were allowed to range from -45o to 900,
in 50 increments. The training data was developed by randomly selecting one
hundred sets of skin orientations for which the lamina orientations were chosen from
the allowable design set. Each of these wings were optimized using ASTROS for
minimum weight. Constraints for the optimization were placed on the displacement
of the wing tip nodes (± 10 in.), flutter speed(925 KEAS @M=.8), as well as a stress
constraints for two static loads. These 100 designs provided the training data for a
neural network. The neural network was composed of 24 inputs, 50 nodes in the
single hidden layer, and a single output neuron corresponding to the first natural
frequency of the "optimized" wing.

The discrete character of the laminae orientation design variable was treated
in a special fashion for this study. The angular orientations were discretized to
provide a network input with a "binary-like" representation. Each lamina orientation
required six "bits" of "coded" data to describe the lamina orientation. A "low" value
for the bit was 0.1 and a "high" value was 0.9. The lead "bit" for each lamina was
used to signify sign (.9 = "+", .1 = "-"). The following illustrates the scheme used to
represent the discrete lamina orientations.

lamina orientation "bi.im".code neural network input
00 0,0,0,0,0,0 0.1, 0.1, 0.1, 0.1, 0.1, 0.1
50 0,0,0,0,0,1 0.1,0.1,0.1,0.1,0.1,0.9
-50 1, 0,0,0,0,1 0.9, 0.1, 0.1, 0.1, 0.1, 0.9
100 0,0,0,0,1,0 0.1,0.1,0.1,0.1,0.9,0.1-100 1, 0, 0, 0, 1,0 0.9, 0. 1,0. 1,0. 1,0.9,0. 1
150 0,0,0,0,1, 1 0.1,0.1,0.1,0.1,0.9,0.9

etc.
This representation required then required 24 total inputs to define the orientation of
the four plys for the composite skin.

6.4 Design for Survivability

Two different types of neural network applications to damage tolerant design
are presented. In the first example, the neural network procedure was used to
determine the effect that configurational layout of a helicopter tail-boom has on the
weight and natural frequency of a damage tolerant structure. A single, fixed, applied
loading and six different damage conditions were used in the design, and structural
configurations were obtained to achieve minimum weight. In the second example, a
finite element model of a wing-box was considered for a damage tolerance study,
and the trained neural network was used as a prediction tool for the structural
response (natural frequency, flutter occurrence and flutter speed) of the wing to
various damage conditions.

SWIFTOS was used to generate training data for the neural network in the
first example. This allowed for the efficient design of hundreds of trusses of various
geometries and damage conditions in an automated fashion. Constraints on tensile
and compressive stress as well as buckling stress for the axial force rods were
considered. Multiple damage conditions were included, with the most violated
constraint of each element for the undamaged and damaged condition(s) being
retained to drive the FSD algorithm.

For the damage tolerant lifting surface application ASTROS was used to
analyze a set of damaged wing-boxes. This was augmented with the automated pre-
processor which was used to develop the ASTROS bulk data. These wing-boxes,
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whose element gauges were determined through a stress and flutter constrained
optimization on an undamaged baseline wing, were subjected to various possible
damage conditions. The automated mesh generator was used to select damage
conditions at random.

6.4.1 Helicopter Tail-Boom

A helicopter tail-boom was considered for a damage tolerant configurational
design6W. A structure of this type can be modeled in two ways; a closed tail-boom
with a stressed-skin cover over the longerons and cross members or an open tail-
boom consisting only truss elements. The latter was employed in this study. Figure
33 shows the tail-boom truss. The regions indicated by sections A-D were parts of
the structure where certain nodes were allowed to vary in longitudinal location. The
range of locations for the nodes that make up the lateral "frame" at each cross
section location are shown in Figure 33. Figure 34 shows the loads applied to the
structure. These loads were used for the undamaged structure as well as all the
damage conditions considered for this study.

The finite element model is composed of 108 axial force rods. A summary of
the finite element model parameters is given in Table 11. A local buckling stress
constraint was used, but global buckling behavior was not considered. No design
variable linking was used, thus there were a total of 108 unique design variables for
the undamaged, baseline configuration. This configuration is similar to a previous
optimization study presented in Reference 60.

It was desired to determine the effect that configurational changes would
have on optimal weight and natural frequencies for the given loading. Six possible
damage conditions were considered. These were the same damage conditions used in
Reference 60. The damage conditions consisted of the removal of a single node, and
the nine rod elements connected to it. The configurational design variables involve
the locations of sections A, B, C, and D, which were allowed to vary in the X1
direction. Modifying these section locations effectively modifies all three coordinate
values for the applicable nodes at each section. Sections vary in a manner such that
the overall geometry of tail-boom remains linear from root to tip.

Section A was allowed to range in X1 value from 66.5 in. +10.0 in.
Section B was allowed to range in X1 value from 99.5 in. +_10.0 in.
Section C was allowed to range in X1 value from 127.5 in. + 6.0 in.
Section D was allowed to range in X1 value from 151.5 in. + 5.0 in.

One hundred, least weight trusses were designed using SWIFTOS, where the
location of Sections A, B, C, and D were selected at random. The resulting designs
were analyzed to determine the first three natural frequencies and weight. A neural
network composed of 4 inputs, 48 nodes in the single hidden layer, and 4 outputs
(weight, first three natural frequencies) was trained to within 1% error using this
training data.

6.4.2 Five Spar Wing-Box

A built-up finite element model of a wing-box was also considered to
illustrate the utility of this neural network application for more advanced damage
tolerance design applications. This application is different than the first in that rather
than forming a mapping of a set of continuous design variables the neural net now
was working with a set of discrete variables.
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Figure 33. Helicopter Tail-Boom Used in Damage Tolerant Design Study
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Figure 34. Applied Loads for Helicopter Damage Tolerance Study

Table 11. Finite Element Model Parameters for Helicopter Tail-Boom Damage

Tolerance Design Study

Solid and circular in cross-section rod elements
Constructed of 2024-T3 aluminum alloy
E= 10.5(103) ksi, p= 0.1 lb/in. 3

Stress allowables of +25 ksi.
Minimum allowable cross-sectional area of .0415 in.2.
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The wing under consideration had a root chord of 100.0 in., a tip chord of
50.0 in., and a semi-span of 300.0 in. A NACA 0010-34 airfoil was used to define
the nodal coordinate locations, and spars were located at 15.0, 30.0, 45.0, 65.0, and
80.0% chord. Non-structural mass totaling 800 lb was distributed over the wing. The
finite element model, along with a typical damage case, is shown in Figure 35. The
undamaged model was composed of 50 axial force rods representing the connecting
posts, 90 shear panels representing the spar and rib membranes, and 80 isoparametric
membranes representing the skins elements. The wing was cantilevered at its root.
The baseline wing was designed for two loading conditions, a +4g pull-up and a -2g
condition, as well as a flutter constraint of M=.85 at sea level was imposed. The
design model was composed of 131 variables (all connecting posts were physically
linked, all spar shear panels were unique, and all skin membranes were unique
design variables). Once the baseline design was obtained, 150 ASTROS analyses
were performed on damaged models.

For this example, it was desired to determine the behavior of the wing-box to
possible "moderate" damage conditions. Moderate damage was defined as the
complete loss of stiffness contribution for two spar shear panels and six skin
membranes. The location of these elements was then selected at random over the
structure for each of the 150 models. This damage model does not exclude the
possibility of localized or "concentrated" damage, which is more typical of ballistic
damage models. Those elements considered damaged were completely removed
from the finite element model.

For the damaged wings, a modal analysis was performed to determine the
dynamic characteristics and a flutter analysis was performed to determine if the
damaged wings would experience flutter (recall that a flutter constraint was imposed
on the design of the baseline wing). The analysis of each damaged wing required
roughly one CPU hour on a DECstation 3100. The inputs to the neural network were
an identifier for the damaged elements of the structure, and the neural network
outputs were the structural characteristics for the corresponding damage condition. A
neural network composed of 130 inputs (representing all spar shear web elements
and all skin membranes) a single hidden layer of 24 neurons, and 5 output neurons
(representing flutter likelihood, associated flutter speed, and the first three natural
frequencies) was trained to within 1% using all of the 150 cases of the ASTROS
training data. The input vector described the current state of the structure; non
damaged elements had a value of 1.0 in the input vector while damaged elements
had a value of 0.0. An additional 50 damaged wings were also analyzed for
comparison with the neural networks prediction of their behavior.
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7. PRELIMINARY DESIGN STUDIES - RESULTS AND DISCUSSION

This section presents the results of the design studies outlined in Section 6. The
studies are organized into four sub-sections. They involve:

1. Configurational design with continuous design variables
2. Recursive training for continuous design variables
3. Material selection with discrete design variables
4. Damage tolerant design.

In each case a quantitative representation of the design space using neural networks was
developed, and the influence that both neural network geometry and training had on the
final designs was determined. In certain cases the character of the design space was also
determined. In those cases where the neural networks were used as part of an
optimization problem, improved designs were obtained.

7.1 Configurational Design - Continuous Design Variables

The discussion in this section centers on the configurational design examples,
those involving continuous design variables. The nature of the design space
representations as well as the extent to which improved designs were obtained is
discussed. In each of the problems, the final goal was to obtain results that would indicate
useful information for informed preliminary design decisions.

7.1.1. Ten Bar Truss

For the ten bar truss model, neural network training data was formulated using
FSD weight values for randomly selected truss geometries. Two different neural networks
and six different sets of training data were used. The two neural networks were
distinguished by the number of neurons in the single hidden layer. The hidden layers had
20 and 40 neurons, respectively. The sets of training data considered involved 50, 100,
200, 300,400, and 500 designs. Two different levels of training were used. In the first
set, the training termination criterion was set to E=0.02, while in the second set the
training level was E=0.01. Recall that E is the difference between the desired and the
actual outputs using scaled output variables.

In order to evaluate the ability of the various network and training data
combinations to effectively represent the design space, a set of 500 additional truss
designs was created and used for comparison purposes. None of these designs were
present in the original data used for the network training, and all 500 had randomly
selected geometries. The network predicted weight values were compared to the actual
weight values, and a maximum error value for the entire set of 500 designs was obtained.
An RMS error value was also calculated. Maximum error was simply the highest percent
error, where percent error is defined by

%error = l(actual - network) X 100. (7.1)I actual I

where the actual values were data from the additional set of 500 designs and the network
values were the neural network outputs.

The RMS error was defined by the following equation

RMS err..1%errorr (7.2)

n
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where n is the number of propagated data sets (n=500).
Figure 36 shows a comparison between the maximum error values for the two

networks, where maximum error is simply the highest percentage error obtained from any
given network prediction for the 500 new designs. The neural networks used in this figure
had a training error value of E=0.02. The numbers shown above the columns in the figure
represent the design designation (an arbitrary designation for each of the 500 new
designs) which produced the maximum error value shown.

There is an interesting distinction that can be made about the 6-40-1 network in
contrast to the 6-20-1 network. For the smaller training set size cases of 50 and 100 IOPs
(Input-Output Pairs), there is a marked difference in maximum percent error. In the case
of the 50 IOP networks, there is nearly a 2 to 1 difference in error between the 6-20-1 and
6-40-1 networks, respectively.

Table 12 shows designs that produced the maximum errors. The design number
in Table 12 corresponds to the numbers above the columns shown in Figure 36. These
designs seem well dispersed in the design space, although the Y5 value does have only a
small range of values (7.242-8.052 in.). This would imply that training data located in
this region was sparse. Note also that the design numbers shown in Figure 36 do not
remain constant but vary as the IOP number increases. This is because certain regions of
the design space were becoming better refined with the additional lOP sets. This shifted
the maximum error to other points in the design space.

Another distinction that can be made about the two networks is that the 6-40-1
network exhibited a much more consistent maximum error value as the IOP number
increased (in the range of 15%). The 6-20-1 network, in contrast, showed a definite trend
toward a reduction of maximum error as the IOP number increased. The 6-20-1 network
with 500 IOP's also exhibited the lowest maximum error value, 11%.

Finally, the 6-40-1 network exhibited a lower average percent error; 15.3% as
compared to the 6-20-1 network's value of 18.7%. The maximum error trends refer to
individual points in the design space (outside of the training data), and this may not be the
best indicator of the overall network performance. The RMS error may be a more
valuable indicator.

Figure 37 shows the RMS error for the two neural networks. The RMS error
values share some of the same characteristics as the maximum error values-notably the
consistency of the 6-40-1 network's error values at approximately 6%. The 6-20-1
network displayed a larger variation range, but also has significantly lower RMS errors
for the 300 and 500 IOP cases than the 6-40-1 network. The 6-20-1 network with 500
lOP's had the lowest RMS error value of 3.0%, and the 6-20-1 network also had the
lowest average RMS error value; 5.6% as compared to 6.0% for the 6-40-1 network.

Figure 38 shows the maximum errors obtained when the neural networks were
trained to E=0.01. As was seen in Figure 36, the trend in maximum error was towards a
reduction as the number of training pairs was increased. Unlike the results shown in
Figure 36, there is a much larger maximum error value with the 6-40-1 network and the
50 IOP training set than was seen previously. The only difference between the two 6-40-1
networks with 50 IOP training sets was the training termination error; the reduction in
error was effectively modifying the design space mapping in such a way that a poorer
representation was being formed in a region where one of the non-training designs was
located.

As was noted previously, the 6-20-1 network had a lowest maximum error value
with 500 IOPs, but with the change in training error, the maximum error value had risen
from 11% to nearly 14%. This indicated that enforcing a tighter training error tolerance
can adversely affect the design space representations. The average maximum error values
reflected this as well. For E=0.02, the maximum error values were 18.7% and 15.3% for
the 6-20-1 and 6-40-1 networks respectively. For E=0.01, these values climb to 21.7%
and 18.9% respectively. Similar reductions in accuracy have been noted by Berke and
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Figure 36. Maximum Error Values (E=0.02) from a Comparison with 500 New Ten Bar
Truss Designs

Table 12. Designs Which Resulted in the Maximum Error for the Ten Bar Truss
Configuration Design

Design # X2 Y2 X4 Y4 X5 Y5

492 9.688 4.910 19.641 7.294 9.042 8.052

221 9.030 3.780 20.398 12.523 9.072 7.662

227 10.683 4.290 17.563 9.725 10.880 7.242

109 10.280 4.880 20.353 9.372 9.237 7.474

212 10.153 4.710 22.071 10.558 10.633 7.624

284 10.418 4.120 18.793 10.258 7.429 8.029
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Figure 37. RMS Error (E = 0.02) from a Comparison with 500 New Ten Bar Truss
Designs
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Figure 38. Maximum Error Values (E=0.01) from a Comparison with 5(X) New Ten Bar
Truss Designs
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Hajela 1I who noted that a network trained to a higher tolerance (e.g., lower E) matched
the training data more accurately (which is exactly what the training process does) but
was less accurate for generalization. They defined generalization ab the ability of the
trained network to accurately predict values in the design space outside of those points in
the training set.

The most pronounced change between the two termination error cases was seen
for the 6-40-1 network with 50 IOPs in which the maximum error nearly doubled, going
from 17% to 32%. All the 6-20-1 networks with E=0.01 showed an increase in maximum
error over the E=0.02 cases as well. For the 6-40-1 network increases were seen for the
50, 300, and 400 lOP cases.

Figure 39 shows the RMS error values for the two networks when trained down to
E=0.01. The trends in the RMS values were similar to the trends seen for the E=0.02 case
of Figure 37 in that there was a reduction in the RMS error values as the lOP number
increases. There was however a more significant drop in error from the 100 to 200 lOP
case. The RMS error then displayed a lower variation than was seen in the previous case.
Also, the 6-40-1 network exhibited a more constant "rror value, which fluctuated around
6% after 100 lOP. This nearly constant value, in compirison to the 6-20-1 network, was
noted for the E--0.01 results. The RMS error values incieased over the E=0.02 case, from
5.6% and 6.0% for the 6-20-1 and 6-40-1 networks to 6.3% and 6.4%, respectively, for
E=0.01. Also, the lowest RMS error value for E--0.01, 5.6%, was nearly double that of
the lowest RMS error value for E=0.02, 3.0%.

The neural networks were interfaced to the optimization algorithm described
earlier to solve a general nonlinear programming problem. This allowed the
determination of minimum weight truss geometries where weight was considered as the
objective function. The neural network representation of the configurational design space
was used as the "function" to be minimized (i.e., the weight value predicted for the neural
network based on the given truss geometry). Figure 40 shows one such least weight
configuration as determined from the neural network/optimization procedure. The FSD
weight of this configuration, 6.07 lb, represents a 4% reduction in design weight over the
least weight configuration in the training data used. The 6-20-1 network with E= 0.02 and
500 IOP was used to obtain the configurational design shown in Figure 40. This network
was chosen because it had the lowest RMS error values for the comparison studies,
implying that this network configuration had the best overall representation of the design
space. The resultant design obtained from the math-programming procedure was a
function of the neural network representation of the design space.

The remaining network/IOP combinations for both the E--0.02 and E--0.01 cases
were also used to obtain least weight structural configurations. In every case, node 5 was
driven to a (7.00, 7.00 in.) location. There was some difference in the values obtained for
nodes 2 and 4, however. Figure 41 shows the (x, y) locations obtained for node 2 from
the various networks. The 50 IOP networks had locations of (9.0,-3.0 in.) for node 2. The
100 lOP networks had dissimilar locations for the node location, but a trend was
apparent. The remaining designs were clustered in the range of (11 ,-2.11 in.) to (11,
-1.34 in.). The one variation from this trend was for the 500 lOP E=0.02 case, which had
a node 2 location at (10.55,-1.54 in.).

Figure 42 shows the locations of node 4 that were obtained from the
optimizations. The nodal locations are relatively well clustered, with the 300 IOP case for
E=0.01 being the most distant from the clustered region. All designs had node 2 and node
4 locations that were situated in the same "quadrant" for their respective regions.

Figure 43 shows the node 2 locations for the optimal designs obtained from the 6-
40-1 networks. When compared to the results for the 6-20-1 network, shown in Figure 41,
it is seen that there was less consistency than for the results obtained for the previous
network geometry. For the higher lOP networks there was a distinct clustering around
(11.0,-1.4 in.). This region was also isolated in the results for the 6-20-1 networks. Unlike
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Figure 39. RMS Error (E=0.01) from a Comparison with 500 New Ten Bar Truss
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Figure 40. Least Weight Ten Bar Truss Configuration as Determined Using the Neural
Network
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Figure 41. Node 2 Location for Optimum Designs Obtained Using the 6-20-1 Network
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Figure 42. Node 4 Location for Optimum Designs Obtained Using the 6-20-1 Network
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Figure 43. Node 2 Location for Optimum Designs Obtained Using the 6-40-1 Network
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the 6-20-1 cases there were four (rather than 2) designs along the Y=-3 axis. In fact, the
results for the 50, 100, and 200 lOP cases were the results that were not in the clustered
area. This was in contrast to the results for the 6-20-1 network in which only the 50 and
100 lOP cases were not in the clustered area (excluding the 500 lOP E=0.02 case).

Figure 44 shows the locations for node 4 obtained from the optimal designs using
the 6-40-1 networks. The design locations were in the same range as was seen previously
for the 6-20-1 cases. The 300 lOP E=0.01 case had gone from one extreme to another--
from (21.87,7.65 in.) for the 6-20-1 network to (20.07,7.00 in.) for the 6-40-1 network.
Also, the 200-02 design had moved from (21,05,7.19 in.) to (21.70,7.53 in.), outside of
the clustered region.

Figure 45 shows a comparison between the neural network predicted weights for
the optimal configurations as compared to the actual weights obtained from a FSD re-
design of the corresponding configuration. Again, note the improvement in
correspondence of design weight prediction as the urnmber of designs used for training
was increased. The variations in weight between the levels of network training error were
less distinct, although it can be seen that in every case but the 300 IOP case the E=0.02
networks provided a network-predicted weight that was lower than the E--0.01 predicted
weight. This does not translate directly to the actual weight trends, however. It can be
seen that the actual weights for the E=0.01 versus E=0.02 cases are higher for five of the
six cases, the exception being the 300 lOP case (where the E--0.02 design has a lower
weight than the E=0.01 design).

Figure 46 shows the percent error between the network predicted weights for the
optimal truss configurations and the actual FSD weights for these configurations. The
agreement between the network and actual values was seen to improve as the size of the
lOP set increased. The error between the predictions for the E--0.01 cases was lower than
the E=0.02 cases except for the 300 lOP case, corresponding to the results shown in
Figure 45 for this case. The best correspondence was for the E--0.01, 400 lOP case, with
an error of less than 1%. The reduction in error between 50 and 100 lOPs was dramatic--
the 100 lOP case has less than half the error of the 50 lOP case. The reductions in error
beyond the 100 lOP set were more gradual.

Figure 47 shows the same type of comparison as Figure 45, but this figure refers
to the 6-40-1 network group. The same trends as seen in the previous figure were again
noted, namely that the comparison between the network values and the actual optimum
values improved as the amount of training data increased. As was also seen in the
previous figure, the network predicted values were typically lower than the actual FSD
values. This occurred for all but two cases, 300 lOP and 400 lOP, both with E=0.02.
There was more of a variation in the results for the 6-40-1 network for the higher lOP
designs (300-500 lOP) as compared to the previous network. The 300 lOP network with
E=0.02 provided the lowest weight design, 6.04 lb, as compared to the 400 lOP E=0.02
case for the 6-20-1 network with a weight of 6.05 lb.

Figure 48 shows the percent error between the neural network predicted values
and actual FSD values. It was seen that the error level dropped as the lOP number
increased. Also note the percent error was typically higher for the E--0.02 networks, the
exceptions to this being for the 300 and 400 lOP cases. The lowest error occurred for the
400 lOP E= 0.02 case--less than 0.5%.

The ten bar truss configurational design example was formulated to provide a
relatively simple example that described most of the major concepts and implementation
issues which arose in the use of neural networks for design space representation. The
issues relating to the interpretation of the design space representation were also addressed
with this example. The following example, that of a three spar wing-box, was meant to
provide a more complex structural model and design task. The same issues that have been
discussed for the ten bar truss will again be revisited for this problem; namely, the
effective formulation of a design space representation and interpreting the results
obtained from the neural network design space representation.
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Figure 45. Comparison between Network Predicted Optimum Weights and Actual
Optimum Weights (6-20-1 Network)
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Figure 46. Percent Error Between the Network Predicted Optimum Weights and Actual
Optimum Weights (6-20-1 Network)

91



"6. 1 Neural Net

6.2 E] Actual

6 A. 50 lOP E=.01

B. 50 lOP E=.02
5.8 ."C. 100 lOP E=.01

D. 100 lOP E=.02
5.6 E. 200 lOP E=.01

F. 200 lOP E=.02
5.4 G. 300 IOP E=.01

H. 300 lOP E=.02
5.2 I. 400 lOP E=.ol

"J. 400 lOP E=.02
51 K. 500 Iop E=.01

1BC D EF G H-1J1LL. 500 IOP E=.02A B C D E F G H I J K L
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7.1.2 Three Spar Wing-Box

Spar locations were considered as the configurational design variables for this
example. To provide training data for the neural network, sets of training data composed
of 20, 50, and 100 different wings were considered. Spar locations were selected at
random for the training data. The wings were designed using the FSD approach described
previously, and a modal analysis was performed for each of the resulting designs. Three
neural networks were used for this example. Each had 3 inputs (the 3 spar locations), a
single hidden layer composed of 20, 40, or 80 nodes, and an output layer composed of 5
neurons. The five outputs were FSD weight, tip deflection at the main spar location, first,
second, and third natural frequency. The networks were trained to an error tolerance of
E=0.02. A second set of 100 wing configurations were designed, and then propagated
through the neural networks for comparison purposes. This provided a means to
determine the design space representation "quality" of the various hidden layer and
training pair combinations.

Table 13 illustrates the fully-stressed design procedure's ability to consistently
identify least weight designs. The fully-stressed design procedure was used to design a
wing with spar locations at 25, 45, and 65% chord. Twenty designs were produced, each
design starting from a different set of randomly selected element gauges. As can be noted
from the table the tolerance and RMS error values are low. The highest tolerance and
RMS errors occurred for the second natural frequency.

Figure 49 shows the maximum errors that were found when the 100 new designs
were propagated through the 3-20-5 networks. Two numbers are shown in the legend; the
first is the number of neurons in the hidden layer, and the second is the number of
training pairs in the IOP set. The expected trend in the error, which was noted for the ten
bar truss example, was the reduction in error as the number of training pairs was
increased. All quantities but the tip displacement errors showed this trend. There was a
small increase in error from the 50 to 100 IOP case for tip displacement. Most error
values were below 1%, but the second natural frequency had a maximum error value that
was greater than 5% for the 20 IOP case. The third natural frequency had a 2% error for
the 20 IOP case. These relatively high errors were due to the relatively high range of
values that the second and third natural frequency assumed as compared to the other three
network outputs. The second natural frequency ranged from 14.4 to 22.4 Hz, a 56%
increase. The third natural frequency ranged from 30.3 to 33.6 Hz, an I 1% increase. The
first three network outputs had 11%, 20%, and 22% variations, respectively (which were
much lower than the second natural frequency value). As the lOP number increased from
20 to 50, there was a dramatic reduction in error for the second and third natural
frequencies.

Figure 50 shows the maximum errors for the 3-40-5 networks. Again, as expected,
the most prominent trend was the reduction in error as the IOP number increased. As
might be expected from the previous figure, the second natural frequency had the highest
error, this time nearly 7% for the 20 IOP case. The first natural frequency error values did
not follow the expected trend. The 100 IOP error was larger than either the 20 or 50 IOP
case.

Figure 51 shows the maximum error values for the 3-80-5 networks. The expected
trend towards a reduction in error for increasing IOP number is again illustrated. As
compared to the previous two cases, the 20 IOP tip displacement showed a steep increase
in error (over six times as large as the 3-20-5 network and nearly double the 3-40-5
network). All output quantities showed the expected reduction in error as IOP number
increased.

Three different networks were considered so that the effect that the hidden layer
size had on design space representation could be noted. Rather than consider individual
network output quantities for this comparison, the maximum errors were averaged for the
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Figure 49. Comparison of Maximum Errors for the Three Spar Wing (3-20-5
Network)
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Figure 50. Comparison of Maximum Errors for the Three Spar Wing (3-40-5 Network)
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comparison. The 3-20-5 network provided the lowest average maximum error value,
1.184%, followed by the 3-40-5 network with a value of 1.292%. The 3-80-5 network
had the highest average maximum error value, 1.333%. Increasing the number of neurons
in the hidden layer can be associated with an increase in the average maximum error
value for this particular example.

Figure 52 shows the RMS errors for the 3-20-5 networks. The expected trends in
error were easily identified--a reduction in error as the lOP number increased. As might
be expected, the second natural frequency had the highest RMS error value. The RMS
error for the weight (20 lOP case) was also relatively high. This was unexpected from the
maximum error data, but it implied that more of the 100 new designs were less accurately
represented by the neural network for the 20 lOP case.

Figure 53 shows the RMS errors for the 3-40-5 networks. Reduction in error as
the lOP number increased is readily apparent. The second natural frequency again had the
highest RMS error values, but the tip displacement error for the 20 lOP case was much
more compa, ble to the other RMS errors for the network outputs. The third natural
frequency errors have been reduced over those of the 3-20-5 cases.

The RMS errors for the 3-80-5 networks are shown in Figure 54. The weight error
for the 20 lOP case had risen appreciably, nearly double that of the 3-40-5 network. The
second natural frequency shows the same large error as well. The tip displacement error
for the 20 lOP case was also appreciably higher than the corresponding case for the
previous two networks.

In order to make a generalized comparison of the quality of the three networks for
design space representation, the RMS errors were averaged for each of the three
networks. The 3-20-5 networks had the highest average RMS error, with a value of
0.7 1%. This was followed by the 3-80-5 networks, with an average RMS error of 0.42%.
The 3-40-5 networks had the lowest RMS error, with a value of 0.4 1%. These results
were different from the trends noted for the average maximum error, which indicated that
an increase in the number of neurons in the hidden layer corresponded to an increase in
the average maximum error. The RMS results almost indicate an opposite trend. The 3-
20-5 networks had a significantly higher value than either the 3-40-5 or 3-80-5 networks
(both of which had nearly identical average error values). This could imply that there was
an optimal network geometry somewhere in the 20-80 neuron range for the hidden layer
(for this particular problem).

The neural network representations of the design space for the three spar wing-
boxes were interfaced to the math-programming optimization procedure to extract a set of
optimal configurations. Each of the network output quantities (tip displacement, weight,
first, second, and third natural frequency) were used independently as the objective
functions for the optimization. Table 14 shows a comparison between the neural network
predictions for this set of optimal design values and the actual FSD values for wings of
corresponding geometry. It can be seen from the table that there is a good correspondence
between the values, showing that the neural network has in fact represented the design
space accurately. The 40 neuron hidden layer network trained with 100 lOP was used
since this network exhibited the lowest average RMS error for the comparative study
performed earlier.

The minimum weight design was a "narrow" wing-box. The leading and trailing
edge spars were positioned at their upper and lower constraints, respectively. The leading
edge spar, at 30% C, was at the maximum thickness location for the NACA 4412 airfoil.
The wing-box cross section is effectively "tall and thin," maximizing the second moment
of inertia.

The minimum tip deflection design had both the leading and trailing edge spars at
their most forward and aft positions, respectively. In this case the wing-box was "wide
and thin." This wing was much heavier than in the previous case due to the addition of
material--material that provided a lower displacement value. Not surprisingly, the
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dynamic characteristics of this design were quite different from the minimum weight
case.

The minimum first natural frequency design was, effectively, the thinnest wing-
box possible. As in the minimum tip deflection case, the leading and trailing edge spars
were at their lower and upper bounds, respectively. The main spar was at its most aft
position, where its height was a minimum. This mode was a first beam bending mode.

The minimum second natural frequency design was very similar in geometry to
the minimum weight design. The leading and trailing edge spars were at their upper and
lower bounds respectively, while the main spar was at the position where it had a
maximum height. Again, the cross section was narrow and tall. This mode was a torsional
mode.

The minimum third natural frequency design was identical to the minimum first
natural frequency design. The leading and trailing edge spars were at their lower and
upper bounds, respectively, and the main spar was at the position where its height was
minimized. This resulted in a wide, thin cross-section for the wing-box. This was a
second beam bending mode.

In addition to the above designs, optimal designs based on a "weighted" objective
function were also possible. This would have involved formulating the objective function
as a weighted function of the five output quantities. This possibility was not explored at
this time, but it is feasible to incorporate multiple requirements into the process.

7.2 Configurational Design Using Recursive Learning

Two examples were considered: the configurational design of a ten bar truss for
minimum weight and the configurational design of a four spar wing-box where tip
displacement, FSD weight, and natural frequency were considered independently as the
objective functions. A description of the impact that the recursive learning procedure had
on the use of neural networks is presented along with the results obtained for both
examples.

7.2.1 Ten Bar Truss

The ten bar truss example employed a 2-80-80-1 network (2 inputs, 80 neurons in
the first hidden layer, 80 neurons in the second hidden layer, and 1 output neuron). An
initial training set of ten randomly selected designs was used to start the procedure. At
each iteration in the recursive procedure two new designs were generated as described
previously.

Three of the recursively trained networks which were developed as part of this
iterative process are presented in this report: the initial network with 10 lOP, the network
trained with 20 lOP, and the network trained with 40 lOP. Graphical presentation of the
neural network representation of the design space was accomplished by developing
contour plots from data determined by propagating a 100 by 100 set of evenly spaced
nodal coordinates through the neural networks at each stage of the design space
evolution. This particular problem was selected to allow for the graphical presentation of
a two-dimensional design space.

Figure 55 shows the weight trends obtained from the baseline neural network
trained with only ten lOP. These initial ten lOPs, shown as circles in the figure, were
randomly selected (x, y) coordinate locations for node 2. The design space was poorly
defined at this early stage; weight appeared to vary in a very predictable manner with
changes in geometry. This was due to the limited information provided by only ten
designs.

Figure 56 shows the design space after ten additional designs were added. Those
designs added randomly are denoted once again by circles. The five designs determined
by the recursive procedure as the least weight configurations are represented by the
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triangular symbols. Even at this early stage the recursive procedure has been able to
isolate the global minimum for weight (node 2 located near 150., 20. in.). Two of the
recursive designs were located in this region. The locations of the other recursive designs
are of interest. They appear to represent local minima within the neural network
representation at interim steps in the recursive process. These designs resulted from the
use of the procedure which determined these points. The gradient based optimization was
initiated using a random starting point for the node 2 coordinates. This apparently
resulted in the optimization isolating local minima along constraint boundaries. An
alternative approach may have been to perform multiple optimizations with a set of
random starting locations, and then select additional candidate designs from the resultant
set.

The design space representation using 40 designs in the network training is
illustrated in Figure 57. Hexagonal symbols represent the ten additional network
predicted least weight configurations added to the training data. The randomly selected
training data is again represented by a solid circular symbol. Four of the network-
predicted optimal designs were at the global minimum. One other, at (133., 10. in.), was
also not far from the optimum. Four of the other network predicted optima were clustered
about a local minimum at (50., 20. in.), while the final optimal design was at (90., 50.
in.). The single random starting location for the optimization procedure was the likely
cause for the latter five designs (i.e. local minima). The evolution of detail in the design
space is indicated in Figures 55-57. Several local maxima and minima appeared as
additional information was added to the training set. It is interesting to note that a local
minimum was formed at (120., -10. in.) in a region where no training data was present.
This local minimum, shifted to a location of (135., -10. in.) with additional design space
detail as seen in Figure 58.

Figure 58 illustrates a design space representation formulated for comparison
purposes. It was obtained from a neural network with the same network geometry as
above but it was trained using 100 randomly selected designs. The global minimum at
(150., 20. in.) is readily apparent, along with the other local minima and maxima that
were seen previously. The two predominant local minima seen in Figure 56 are further
refined in this figure. It is interesting to note that the recursive neural network was able to
describe the local minima at (120., -10. in.) in Figure 57, which is clearly defined in
Figure 58, shifted to (135., -10. in.). The neural network was able to isolate this local
minimum even though there was no training data in this region of the design space for the
40 IOP case.

Because of the two-dimensional nature of the design task for the ten bar truss, this
example has provided a "graphical" means to inspect the design space development as the
recursive learning procedure progressed. The procedure was shown to be effective for
defining the characteristics of the design space with small sets of training data. Trends in
the design space were also identified even though there was no actual training
information located within that region of the design space. The limitations of the
recursive procedure involve isolating local minima rather than the global minimum. This
limitation could be overcome by multiple starting locations for the network-based
optimization phase of the procedure or the use of an alternative algorithm for adding data
to the training set.

A comparison was performed on the neural network representations by
propagating the 100 random designs used to create Figure 58 through each of the three
networks. The 10 IOP network had a maximum error value of 22.09% and an RMS error
value of 1.43%. The 20 IOP network had a maximum error value of 18.44% and an RMS
value of 0.71%. The 40 lOP network had a maximum error value of 18.35% and an RMS
error of 0.65%. The expected decrease in maximum and RMS error as the lOP number
increases was noted. The 100 IOP network, when compared to its own training data, had
a maximum error value of 2.51% and an RMS error value of 0.10%.
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For this study termination of the recursive procedure was done based on a
decision from the user. Design space refinement was monitored and at some point a
decision was made to conclude the recursive process based on the design space
representation's response to the recursive training. There is no simple means apparent to
the authors for a generalized termination criterion for all design space representations.
Thus the termination decision was left to the real, versus artificial, intelligent designer.
The number of recursive iterations employed for the examples reflect this decision.

7.2.2 Four Spar Wing-Box

The wing-box chordwise spar locations were considered as the configurational
design variables for this example. The neural network used for this study had 4 inputs
(the 4 spar locations), a single hidden layer composed of 40 nodes, and an output layer
composed of 5 neurons. The five outputs were the design weight (as determined from the
FSD procedure for the single static load), the corresponding tip deflection under static
load, and the first, second, and third natural frequencies.

Since the goal of the study was not to develop a single point design but to provide
a means for representing the concept's design space, a recursive procedure was required
which would help provide detail in the more critical regions of the multi-dimensional
design space. Also since the design space cannot be "visualized" in as straightforward a
manner as the previous example, the data will be presented in summary table form.
Previous efforts have shown that the actual output from the neural network was not
particularly accurate but does provide good "trend" information. For this reason all the
values shown in the following tables are the results obtained from the actual FSD designs
of the neural network predicted optimal geometry wing configurations.

The network was trained with a baseline set of data composed of only two
designs. Table 15 shows the two baseline optimum designs, the spar locations, weight, tip
displacements and natural frequencies. These two designs were selected at random from a
subset of 32 designs uniformly distributed over the allowable design space. Interestingly,
this random selection process lead to only a variation in the 4th spar as indicated in the
table.

The five network outputs were then used in a cyclic fashion as independent
objective functions to drive the recursive training. Tip displacement was ccnsidered as
the first objective function, followed by weight and then the three natural trequencies.
The subsequent optimization provided a new candidate configuration which was "re-
designed" using the FSD procedure and added to the training set. After the third natural
frequency was used, the weight again became the objective function. Twenty-five
iterations were performed, so that each network output was used as the objective function
five times. Each of the 25 optimal design predictions obtained from the neural network
was used as additional training data to further refine the design space. A comparison
between the recursively predicted optimum values and two other network predictions was
also performed. In the first case 27 randomly selected lOP were used. This was the same
size as the training set developed using the recursive procedure. In the second case 100
randomly selected designs were used in the training set.

The iteration history for those designs that considered weight as the objective
function is shown in Table 16. Interestingly, the design selected after the second iteration,
which resulted from the network trained with only "three" designs, forced each spar to a
constraint limit and resulted in what appears to be a near optimum weight design. The
first, third, and fourth spar locations were the same for all the designs and were located at
constraint boundaries. The second spar location showed a slight variation in location as
additional designs were added to the training set. The weight was reduced from 270.6 lbs
for the first iteration to 270.1 lb for the fifth iteration. The displacement and natural
frequencies also appear relatively insensitive to changes in the second spar location. The
optimal weight configuration obtained from the network trained with 100 random designs
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Table 15. Four Spar Recursive Configuration Design, Baseline Designs

SPAR LOCATIONS W d (01 (02 (03
(% Chord) (ib) (in.) (Hz) (Hz) (Hz)

22.5,40., 55., 67.5 E7288.1 7.99 7.01 17.32 32.23

22.5., 40., 55., 72.5 299.1 j 7,92 6.82 18.81 31.70

Table 16. Four Spar Recursive Configuration Design, Weight Based Designs

NN OPTIMAL
OBJECTIVE SPAR LOCATIONS 0b) (in.) (Hz) (Hz) (Hz)

(% Chord)

2) 30.0,45.0, 50.0,65.0 270.6 8.22 7.43 14.56 32.55

7) 30.0, 36.2, 50.0, 65.0 270.2 8.11 7.45 14.57 32.82

WMIN 12) 30.0, 40.3, 50.0, 65.0 270.2 8.11 7.46 14.33 32.80

17) 30.0, 40.1, 50.0, 65.0 270.1 8.10 7.46 14.30 32.82

22) 30.0, 37.5, 50.0, 65.0 270.1 8.10 7.45 14.47 32.82

27-Random 20.4, 36.8, 52.1, 65.0 285.9 8.00 6.99 17.13 32.53

100-Random 20.8,38.0, 50.0,65.4 286.8 7.98 7.01 16.98 32.69
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was rather poor in terms of the objective function value, when compared to the recursive
results. This weight was 286.8 lb, 6.2% higher than the 270.1 lb recursive value.

Table 17 presents the results obtained for the iterations where tip displacement
was considered as the objective function. It can be seen that there was only a slight
improvement in the objective function as the iterations progressed; a drop from 7.83 in. to
7.81 in. The third and fourth spar locations remained fixed throughout, with the first and
second spars showing some variation in location. Of these two, the second spar showed a
relatively small variation in position (35-38.6%C) as compared to the first spar (15-
22.4%C). The variations in the displacement, weight, and natural frequency were
significantly higher than were seen when weight was used as the objective function.
These quantities were more strongly influenced by the location of the first spar than the
second. This seems reasonable since the first and fourth spar locations effectively defined
the width of the wing-box cross-section, while spars 2 and 3 influenced the thickness
characteristics of the wing-box. The designs obtained from the network trained with
either 27 or 100 random designs showed higher values when compared to the recursive
case. Recall that because the neural network training data involved fully-stressed designs
that each of the designs shown in the tables are least weight, FSD designs.

The designs obtained when the first natural frequency was considered as the
objective function are given in Table 18. As the iterations progressed, a drop in the first
natural frequency from 6.49 Hz to 6.33 Hz was obtained. The first and fourth spars
remained fixed in location for each of the five iterations based upon this frequency. The
second spar changed location only once from 35% to 45% C between iterations 1 and 2.
The third spar location showed a variation in position from 53.1% to 60.0%. The
displacement, weight, and natural frequency characteristics seem relatively insensitive to
changes in third spar location, further enforcing the presumption made earlier that the
first and fourth spar locations were predominant in defining the design characteristics.
The best design obtained from the networks trained with the 27 and 100 designs yielded a
lowest first natural frequency of 6.39 Hz as compared to 6.33 Hz which was obtained
recursively.

The designs obtained when the second natural frequency was considered as the
objective function for the recursive procedure are shown in Table 19. The minimum
second natural frequency dropped from 14.57 Hz to 14.34 Hz as the iterations progressed.
Spar 2 showed a variation in position among the five designs, while spars 1, 3, and 4
remained fixed in location ( with the exception spar 3 which changed location once from
50% to 40% C). These designs were very similar to the least weight designs in geometry,
and again it was seen that the spar 2 location has little effect on the design characteristics.
The minimum second natural frequency design obtained from the 100 random IOP
network shows a poor value for the second natural frequency, 17.01 Hz as compared to
14.34 Hz obtained using recursive learning. The designs obtained when the third natural
frequency was considered as the objective function indicated similar behavior.

The four spar wing example describes the application of recursive learning to a
more complex design problem. The characteristics of the design space were identified
through this approach, and when compared to designs obtained from a randomly selected
training set, the recursive procedure produced improved designs. This is particularly
noteworthy since only a fraction of the training data was used, and thus the cost in
computing time and effort was significantly reduced. Given that the recursive procedure
was able to isolate the five various optimal configurations in the first few iterations, IOP
sets of less than 27 designs may have provided adequate results. This may be an
indication that the necessary IOP size is a function of the design space nature (both in
terms of the dimension and the inherent complexity of the design space).

The recursive learning procedure has shown its potential for use with design space
representation. The impetus for developing a recursive procedure was to allow for the
reduction of training data since the generation of training information was typically the
most time consuming portion of the neural network utilization.
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Table 17. Four Spar Recursive Configuration Design, Tip Displacement Based Designs

DESIGN NN OPTIMAL w 8 (01 (02 W3
OBJECTIVE SPAR LOCATIONS (lb) (in.) (Hz) (Hz) (Hz)

(% Chord)

1) 16.4, 35.5, 60.0, 75.0 314.9 7.83 6.53 20.77 30.93

6) 15.0, 38.6, 60.0,75.0 317.5 7.93 6.46 20.84 30.85

&rMIN 11) 22.4, 35.0, 60.0, 75.0 304.5 7.83 6.75 20.03 31.15

16) 15.0, 35.0, 60.0,75.0 317.4 7.83 6.48 20.96 30.84

21) 16.8, 35.0, 60.0, 75.0 314.3 7.81 6.55 20.72 30.94

27-Random 20.0, 35.0, 59.2,75.0 307.9 7.86 6.64 20.13 31.18

100-Random 21.2, 37.5, 56.8, 75.0 306.3 7.90 6.68 19.89 31.30

Table 18. Four Spar Recursive Configuration Design, First Natural Frequency Based
Designs

DESIGN NN OPTIMAL W W01 (02 W03
OBJECTIVE SPAR LOCATIONS (Ib) (in.) (Hz) (Hz) (Hz)

(% Chord) I I I I

3) 15.0, 35.0, 60.0. 75.0 317.7 7.81 6.49 20.94 30.83

8) 15.0, 45.0, 53.1, 75.0 320.5 8.31 6.32 21.09 30.72

OMIMIN 13) 15.0,45.0, 59.0,75.0 319.9 8.31 6.33 21.49 30.51

18) 15.0,45.0,55.9,75.0 320.0 8.31 6.32 21.29 30.59

23) 15.0,45.0,59.9,75.0 319.8 8.31 6.33 21.55 30.49

27-Random 15.0,40.0, 50.0,75.0 312.3 8.00 6.51 20.31 31.21

100-Random 15.0, 40.6,50.1,75.0 319.1 8.08 6.39 20.40 31.17
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Table 19. Four Spar Recursive Configuration Design, Second Natural Frequency Based
Designs

DESIGN NN OPTIMAL W d --1 2 3

OBJECTIVE SPAR LOCATIONS ( ( (Hz (Hz (Hz

S(%Chord) (lb) (in.) (Hz) (Hz) (Hz)

4) 30.0,45.0, 50.0, 65.0 270.6 8.21 7.43 14.57 32.54

9) 30.0, 41.1, 40.0, 65.0 270.3 8.12 7.46 14.35 32.76
(02MIN 14) 30.0, 40.9, 50.0, 65.0 270.4 8.12 7.46 14.38 32.75

19) 30.0, 41.2, 50.0, 65.0 270.4 8.12 7.46 14.36 32.75

24) 30.0, 40.6, 50.0, 65.0 270.2 8.12 7.45 14.34 32.77

27-Random 20.4, 37.5, 51.9, 87.7 285.9 7.99 6.99 17.11 32.54

100-Random 20.2, 38.9, 50.0, 65.0 287.2 8.01 6.99 17.01 32.68
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7.3 Material Selection - Discrete Design Variables

The next three design studies illustrate the application of simulated annealing and
neural networks to discrete design variable problems. Each design study was modeled
using discrete design variables in order to perform material selection for a given design
configuration. The first problem is a ten bar truss material system design, in which four
materials are considered for each of the ten rods. A least weight material system was the
objective. The second problem is the ACOSS II space truss design, in which four
materials were considered for each of the 113 rods. A least weight material system was
again desired. The last, rather brief example, was an attempt to use this approach to select
laminate orientations for the wing skins for a simple wing-box structure. It should be
noted that the simulated annealing procedure was often able to determine designs that
were a significant improvement over the "best" designs present in the neural network
training set. No recursive learning was employed for these studies.

7.3.1 Ten Bar Truss

It was desired to isolate the material systems that provided least weight truss
designs under the various constraints imposed. Four different network combinations were
considered, composed of 20, 40, 80, and 120 neurons in the hidden layers. Four different
sets of training data were also employed, composed of 20, 50, 100, and 200 designs (200
designs represent only 0.02% of all possible designs). Comparisons were made between
the simulated annealing predictions for least weight material combinations for these
various network geometries and IOP combinations against a set of exhaustive searches
performed using these same networks. This comparison was made possible because of the
neural network efficiency, which allowed the investigation of slightly over I million
(actually, 410) material combinations.

Table 7 shows the four materials employed for the design of the ten bar truss.
Two different grades of aluminum were considered, as well as steel and titanium. An
exhaustive search was performed using the four different neural networks. This involved
propagating all 410 possible material systems through the networks and extracting the
least weight material systems predicted by the networks. Figure 59 presents the four least
weight material combinations for the exhaustive search performed with the 40-20-1
networks. The legend of this figure includes a set of four numbers in parenthesis. These
numbers represent the number of times that the simulated annealing procedure identified
the global minima that were obtained from the exhaustive searches. Since there were ten
simulated annealing executions performed for each network/lOP combination, this
number indicates the relative effectiveness of the simulated annealing control mechanism
and generation mechanism, in isolating the global minimum. This number may also give
a relative indication of the quality of the design space mapping, since the simulated
annealing procedure (generation and control mechanisms) remains constant for all the
networks. The other designs obtained from the ten simulated annealing optimizations
were local minima, and were in most cases one of the five least weight designs obtained
from the exhaustive search.

Regarding the material selections shown in Figure 59, it can be seen that there
was good agreement between the materials selected for the four IOP cases. All ten rods
appeared to have strong tendencies towards one material over the other three. Rod I
clearly has an affinity with material 2, rod 2 for material 2, etc. It would be expected that
as the IOP number increases the changes made to the material vector would improve the
design characteristics (i.e., lower the design weight), since increasing IOP number had an
associated improvement in the design space representation's quality. As will be shown
shortly, this wu indeed the case. Only rods 2, 3, and 9 did not show some change in
matenal as the IOP number increased.
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Figure 59. Ten Bar Truss Minimum Weight Material Selection Obtained from an
Exhaustive Search (40-20-1 Network)
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It was seen that as the lOP number increased, the simulated annealing procedure
was better able to isolate the global minimum. For the 20 lOP case, the global minimum
was isolated only three times, while for the 50 and 100 lOP cases the global minima were
isolated five times. For the 200 IOP case, the minimum was isolated six times. Since the
simulated annealing procedure was unchanged among these four cases, it appeared that
the ability of the simulated annealing procedure to isolate the global minimum improved
when applied using the neural networks trained with increased training set size. This is
possibly due to the "improvement" of the design space representation. It was noted that
when the simulated annealing procedure was not able to isolate the global minimum, that
one of the five least weight material combinations (as determined from the exhaustive
search) was usually identified. Thus, the simulated annealing procedure, while not
guaranteeing that the global minimum will be identified, was able to identify at least one
of the five lowest weight designs.

Figure 60 presents the weights obtained for the trusses designed using the 40-20-1
networks. The network predicted weight values were compared to the actual weight
values obtained from ASTROS designs employing the same material combinations.
There was a distinct reduction in weight as the lOP number increased, as well as an
improvement in the agreement between the network predicted weight value and the actual
ASTROS weight value. Thus, as the lOP number increased the design space "quality"
appeared to improve and the ability of the simulated annealing procedure to extract
improved designs also increased.

Figure 61 describes the four least weight material combinations obtained from the
exhaustive searches performed on the 40-40-1 networks. Definite material assignment
trends can be noted, although every rod has at least one material difference between the
four lOP cases. There was some consistency in the number of times that the simulated
annealing procedure was able to isolate the minimum weight material combinations. The
20, 50, and 200 lOP cases all isolated their respective minimums seven out of ten times,
while the 100 lOP case isolated the global minimum only three times. It is uncertain why
this occurred for the 100 lOP case. It was expected, based on the results from the 40-20-1
networks, that as IOP number increased that the prediction of the global minimum weight
material system would improve. The "quality" of the design space representation should
improve as the lOP number was increased.

Figure 62 shows a comparison between the neural network predicted weights for
the global minimum material combinations shown in Figure 61 and the actual ASTROS
weight values for these material systems. As was seen previously for the 40-20-1
network, there was a distinct reduction in weight as the lOP number increased. This
decrease in weight was accompanied by an increase in accuracy for the neural network
predicted weight values.

The four least weight material combinations obtained from the exhaustive search
using the 40-80-1 networks are shown in Figure 63. Strong trends in material selection
were again noted, with complete agreement over all lOP numbers occurring for rods 3, 5,
7, and 8. The number of times that the simulated annealing procedure isolates the global
minima varied among the four lOP sets, with the lowest correspondence occurring for the
200 IOP case (with only three matches). The number of times that the global minimum
was isolated showed trends similar to those of the 40-40-1 networks. The 200 lOP case
for the 40-40-1 network also had the lowest occurrence of isolated global minima.

A comparison between the neural network-predicted weight values for the four
minimum weight material combinations and the actual weight values is provided in
Figure 64. The trend in weight reduction that was noted for the previous network
geometries was less apparent, although the 200 lOP case was clearly the least weight
design. The improved agreement that was noted between the network and actual weight
values was also less apparent and the 200 IOP case actually showed a relatively poor
agreement between weight values.
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Figure 60. Ten Bar Truss Minimum Weight Material Selection Comparison of Actual
Structure Weights to Neural Network Predictions (40-20-1 Network)
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Figure 61. Ten Bar Truss Minimum Weight Material Selection Obtained from an
Exhaustive Search (40-40-1 Network)
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Figure 62. Ten Bar Truss Minimum Weight Material Selection Comparison of Actual
Structure Weights to Neural Network Predictions (40-40-1 Network)
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Figure 63. Ten Bar Truss Minimum Weight Material Selection Obtained from an
Exhaustive Search (40-80-1 Network)
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Figure 64. Ten Bar Truss Minimum Weight Material Selection Comparison of Actual
Structure Weights to Neural Network Predictions (40-80-1 Network)
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The results for the largest hidden layer size considered are shown in Figure 65.
The four least weight material combinations obtained from the exhaustive search
performed with the 40-120-1 networks are illustrated. Again strong material trends were
noted, with rods 5 and 7 having consistent values for their materials. The number of times
that the simulated annealing procedure was able to isolate the global minimum varied.
The highest number of matches occurred for the 100 lOP case, while the lowest occurred
for the 200 IOP case. As was seen for both the 40-80-1 and 40-40-1 networks, the 200
TOP case again provides the lowest number of isolated global minima. This is not
necessarily an argument against higher TOP sets, though, since in every case the 200 IOP
material systems do provide the least weight truss designs.

Figure 66 shows a comparison between the neural network predicted weight
values for the four least weight material combinations and the actual design weights for
these combinations. The trend towards a reduction in weight as IOP number increased
was again noted, although there seemed to be a decrease in the accuracy of the neural
network predicted weight values as the TOP number increases. This was counter to what
would be expected.

Figure 67 shows the percent error trends for the actual design weights and the
neural network predictions. Both the 40-20-1 and 40-40-1 networks showed a large error
for the 20 TOP case. The 40-80-1 and 40-120-1 networks showed errors less than 1% for
this case. This was surprising since the amount of training data was a very small subset of
the 410 possible material combinations. All the other network and TOP combinations
displayed what might be termed a moderate error (in the range of 3-5%). It appeared that
by increasing the number of neurons in the hidden layer that the ability of the network to
accurately represent the design space improved since the average error values decreased
with an increasing number of hidden layer neurons. The average error values for the four
networks showed a decrease as the number of neurons increased, with the exception of
the 40-40-1 neuron case which did show a slight error increase over the 40-20-1 average
error value. The relatively complex interaction between training set size, neural network
size and design space complexity is demonstrated by this result. The determination of the
most appropriate network geometry and training set is a design problem in its own right!

Some important abilities of the neural networks were identified with this example.
First, the neural networks were able to accurately represent the design space
characteristics so that improved designs could be extracted. The typical reduction in
weight obtained from the simulated annealing material selection process was better than
12% (as compared to the least weight truss design present in the training data). Second,
the weight values for the truss predicted from the neural network were also quite
accurate. Both of these accomplishments were made even more significant by the small
subset of information used to train the neural network (only 200 out of a possible 41°
combinations), and the highly discrete, discontinuous nature of the design space.

7.3.2 ACOSS 11

This example was meant to represent a realistic material system design problem,
both in terms of complexity and computational requirements. The ACOSS 1I space truss
was modeled using 113 axial force rod elements. The design had natural frequency
constraints only. These were an upper bound constraint on frequency of 2.0 and 3.0 Hz
respectively for the first and second modes. The design problem under consideration was
again material assignment. The combinatorial size of all potential material systems is 4113

possibilities.
To investigate the influence of neural network geometry and TOP size on the

simulated annealing approach three different networks were employed with four different
levels of training data. Each of these networks had 452 inputs for the material vector and
a single output corresponding to the design weight. The networks had 10, 40, and 100
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Figure 65. Ten Bar Truss Minimum Weight Material Selection Obtained from an
Exhaustive Search (40-120-1 Network)
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Figure 66. Ten Bar Truss Minimum Weight Material Selection Comparison of Actual
Structure Weights to Neural Network Predictions (40-120-1 Network)
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neurons in the single hidden layer. Training sets composed of 50, 100, 300, and 500
designs were used. Material systems were selected at random and then optimized using
ASTROS. The networks were trained to a maximum error value of E=0.05 for all lOP
sets. Values of E less than 0.05 were found to be difficult to obtain (a low back-
propagation convergence rate was observed for cases where E < 0.05), particularly for
the 300 and 500 IOP training sets. This termination error value did not seem to adversely
effect the final network-predicted designs.

Because of the combinatorial size of the material design problem, an exhaustive
analysis using the nerl, netwrk could not be performed. It is estimated that this would
take in excess of 1050 CPU years, based on approximately 1068 material combinations
and an average neural network propagation time for a single material vector of less than
ten milliseconds on a DECstation 3100. This limits the ability to discern the simulated
annealing procedure's effectiveness in isolating the true global minimum weight design
from the neural network's representation of the design space (as could be done for the ten
bar truss).

It should be noted that the simulated annealing procedure had a fixed set of
constants that defined the nature of the generation mechanism and the control parameter.
Thus, the simulated annealing procedure was unchanged for each of the networks
utilized. The nature of the neural network design space representation was what defined
the success or failure of the existing simulated annealing procedure. The simulated
annealing parameters that maximized the performance of the algorithm for the 500 IOP
set were chosen.

Table 20 shows the characteristics of the four sets of training data that were
employed for this study. For each of the four sets, the maximum and minimum weight
designs were the same. The maximum weight design found for the 500 designs was
8761.4 lb and the minimum weight design was 6986.0 lb. This simplified the IOP scaling
procedure by allowing all four IOP sets to have the same scaling factors. Materials for
individual material vectors were selected at random, and it can be seen from Table 20 that
the percentages of materials within the structures had a nearly uniform distribution. All
materials averaged near 25% for the composition of the total material vectors for each
IOP set. Individual materials comprised at least 12% of any given truss, and never exceed
39%. The average ASTROS design weight for each of the IOP sets was also comparable.

For each of the network and IOP combinations the simulated annealing procedure
was executed five times, resulting in five different designs (a total of 60 designs for all
network/lOP combinations). In each of these 60 cases, the simulated annealing procedure
was run for 20,000 iterations and the least weight network prediction was retained. A
typical simulated annealing iteration history is shown in Figure 68. The network used in
this case was the 452-10-1 network with the 500 IOP training set. The scaled network
output had an initial value just below 0.7 (a value obtained from an initial, randomly
generated material distribution in the SA procedure). The SA procedure then rapidly
converged to the low weight, final design. The inset for the figure describes the first
2000 iterations in more detail. For this example the lowest weight (scaled weight) design
was obtained at iteration 13,515. This scaled weight value, when converted to an actual
weight value, becomes 6825.5 lb. In contrast, the actual ASTROS weight for this material
vector is 6077.9 lb. This large discrepancy between the network-predicted design weight
and the actual ASTROS design weight was noted for all 60 executions of the SA
algorithm.

The error between the network-predicted weights and the actual ASTROS design
values can be attributed, at least partially, to the training data scaling range. The training
data was scaled in the range of 0.1 to 0.9, which had proven reasonably successful in
previous design studies. However, if the network could provide an output of "0" (the
lowest possible neuron output), the corresponding design weight becomes only 6764.1 lb.
The existing scaling, therefore, can never accurately extrapolate to weight values for the
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Table 20. ACOSS II Material Design Study, TOP Characteristics

SlOP and Material Standard Mnmurn Maximum Average Stan~dard

Material Deviation Material Material Deviation
Number Percentages -Materials Count Count Weight(lb) Weight

1) 24.55 4.06 19 37
2) 24.44 4.33 18 37 7871.4 319.67

50 3) 26.33 4.74 19 39
4) 24.67 4.21 22 39
1) 24.03 4.32 19 38
2) 24.67 4.55 18 43 7876.8 299.0

100 3) 25.57 4.47 19 39
4) 25.74 4.62 21 41
1) 24.38 4.40 15 39
2) 24.96 4.29 14 43 7864.2 287.3

300 3) 25.51 4.36 19 43
4) 25.15 4.50 17 41
1) 24.79 4.64 15 41
2) 24.96 4.50 14 43 7887.2 300.4

500 3) 25.14 4.41 19 43
4) 25.11 4.51 15 41
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Figure 68. Typical Simulated Annealing Iteration History, ACOSS II Design Study
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material systems that are significantly less than the lowest weight in the training set with
the current scaling scheme.

Fortunately the trends in the design space were effectively mapped. Scaled
training data in the range of 0.3 to 0.7 was also considered, and a better agreement
between the network-predicted weight and actual ASTROS weight for several designs
was noted (in the best case, the network predicted weight was 6491.2 lb versus a
corresponding ASTROS design weight for the material system of 6130.5 lb). Scaling in
the range of 0.3 - 0.7 gave designs that were heavier in weight (6130.5 lb also being the
lowest actual ASTROS design weight isolated) than those obtained from the original
scaling factors. The original scaling factors were retained due to this apparent better
extrapolation ability even though the actual weight prediction error from the neural
network was rather large.

The ASTROS weights and material percentages for the ACOSS II truss designs
obtained from the 452- 10-1 networks are shown in Table 21. Some distinct trends in the
material vectors could be seen as the lOP number was increased. For the 50 lOP cases, it
was seen that the percentages of the four materials in the five designs were quite similar,
showing only a slight variation (less than ± 2% around the mean value). As the lOP
number increased, there was a clear increase in the percentage of material 3 that
composed the truss. There was also a dramatic decrease in weight for the resulting
designs. Figure 69 shows the average material percentages for the 452-10-1 network
designs as a function of the TOP number. The percentage of material 3 showed a slight
decline between the 50 and 100 lOP cases, but then increased to better than twice its
original value for the 200 lOP case. Material 3 had the highest specific stiffness, and due
to the frequency constraints that drive the ACOSS design, a truss composed solely of this
material provided the lowest weight design that has been achieved (6035.1 lb) for any of
the designs analyzed.

Table 22 shows the material percentages and associated weights for the designs
obtained from the 452-40-1 networks. The same trends that were noted for the previous
network geometry were again seen, most notably the increase in the percentage of
material 3 as TOP number increased. This increase resulted in an associated reduction in
the design weight. The average material percentages obtained from the 452-40-1 network
designs is illustrated in Figure 70. There was a clear dominance of material 3 for the
designs as the TOP number increased, as expected from the results obtained from the 452-
10-1 networks.

The results for the 452-100-1 networks are presented in Figure 71 and the
associated tabular results are in Table 23. As had been noted for the prev'ious io
networks, the trend towards an increased percentage of material 3 in the resulting designs
as the TOP number increased holds for this case. There was also a dramatic reduction in
weight as the lOP number increased (and the proportion of material 3 became dominant).

The average percentages of the four materials as a function of the lOP number are
presented in Figure 71. Again, the dominance of material 3 becomes clear as the TOP
number increases. For each of the three network geometries, there was a dramatic
increase in the proportion of material 3 assigned to the truss designs as the lOP number
increased. This increase in the use of material 3 has an associated reduction in the design
weight (averaging over 800 lb.). Clearly, the neural network representation of the design
space is such that the weight trends associated with the material systems are being
defined appropriately. The design space definition is clearly shown to be a function of the
lOP number.

Figure 72 shows the average design weights obtained for the three networks at
various TOP levels. All three networks gave very similar results in terms of the design
weights obtained for various TOP levels. The most significant trend was the reduction in
design weight as the TOP number increased. It was not expected that further significant
reductions in weight could be obtained by further increasing the lOP level, since the
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Table 21. Actual Weights, Material Percentages and Active Gage Constraints for the
ACOSS II Material Desi an Study (452-10-1 Network)

Network Matea 1Material 1 Mial2 Material 3 Material 4 Min.
Hidden- Weight Percent Percent Percent Percent Gauge

lOP (lb) Elements
6816.4 21.2 30.1 31.0 17.7 36 31.9%
6917.0 23.0 30.9 28.3 17.7 25 22.1%
6808.7 22.1 31.9 27.4 18.6 27 23.9%

10-50 6887.0 23.9 29.2 28.3 18.6 33 29.2%
6922.4 23.0 31.9 28.3 16.8 28 24.8%

Average 6870.3 22.6 30.8 28.7 17.9 30 21.6%
6654.35 21.2 31.9 25.7 21.2 30 26.5%

6627.6 19.5 30.1 25.7 24.8 30 26.5%
6730.5 22.1 28.3 24.8 24.8 30 26.5%

10-100 6666.2 20.4 31.9 24.8 23.0 33 29.2%
6645.7 18.6 32.7 25.7 23.0 30 26.5%

Average 6659.5 20.4 31.0 25.3 23.4 31 27.0%
6278.3 17.7 17.7 44.2 20.4 10 26.5%
6262.6 16.8 18.6 47.8 16.8 27 23.9%
6291.4 17.7 17.7 43.4 21.2 24 21.2%

10-300 6297.7 16.8 17.7 46.0 19.5 29 25.7%
6294.8 16.8 17.7 42.5 23.0 27 23.9%

Average 6284.9 17.2 17.9 44.8 20.2 27 24.2%
6098.7 16.7' "13.3' 4. 15.9 31 27.0%

6084.7 14.2 15.9 56.6 13.3 32 28.3%
6089.6 14.2 14.2 57.5 14.2 31 27.0%

10-500 6078.1 17.7 14.2 56.6 11.5 31 27.0%
6077.9 14.2 15.0 57.5 13.3 32 28.3%

Average 6085.8 15.4 14.5 56.4 13.6 31 27.5%

60- N Material 1

,,50 D Material 2

Material 3

1 30 Material 4

oit
210

50 100 300 500

IOP Number

Figure 69. Distribution of Material Types, ACOSS II Design Study (452-10-1 Network)
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Table 22. Actual Weights, Material Percentages and Active Gage Constraints for the
ACOSS II Material Desi an Study (452-40-1 Network)

Network WMaterial 1 Material 2 Material 3 Material 4 Min.
Hidden- Weight Percent Percent Percent Percent Gauge

lOP (lb) Elements
6943.0 . 27.4 27.4 24.8 29 25.7%
6994.4 23.0 25.7 28.3 23.0 26 23.0%

40-50 6846.9 22.1 28.3 25.7 23.9 29 25.7%
6861.6 20.4 31.9 26.5 21.2 29 25.7%
6803.6 21.2 28.3 27.4 23.0 34 30.1%

Average 6889.9 21.4 28.3 27.1 23.2 29 26.0%
6690.6 150 2. 36 22.1 29 25.7%
6746.3 16.8 29.2 30.1 23.9 30 26.5%

40-100 6830.6 18.6 27.4 31.9 22.1 32 28.3%
6726.7 18.6 24.8 32.7 23.9 28 24.8%
6713.5 16.8 24.8 33.6 24.8 31 27.4%

Average 6741.5 17.2 27.1 32.4 23.4 30 26.5%
6230.6 15.9 16.8 46.0 21.2 29 25.7%
6253.8 13.3 22.1 45.1 19.5 27 23.9%

40-300 6239.5 15.9 15.0 45.1 23.9 27 23.9%
6236.9 14.2 17.7 49.6 18.6 38 33.6%
6324.7 16.8 18.6 41.6 23.0 26 23.0%

Average 6257.1 15.2 18.0 45.5 21.2 29 26.0%
6118.4 3. "'157' 54.9 15.9 32 28.3%
6110.8 20.4 14.2 56.6 8.8 28 24.8%

40-500 6104.3 15.0 15.9 56.6 12.4 36 31.9%
6125.4 17.7 16.8 53.1 12.4 32 28.3%
6096.9 14.2 12.4 60.2 13.3 32 28.3%

Average 6111.2 16.1 15.0 56.3 12.6 32 28.3%

60- Material I

50. ] Material 2

__0._1 Material 3

3. Material 4

0

50 100 300 500

lOP Number

Figure 70. Distribution of Material Types, ACOSS II Design Study (452-40-1 Network)
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Table 23. Actual Weights, Material Percentages and Active Gage Constraints
for the ACOSS II Material sign Study (452-100-1 Network)

Network Material 1 Material 2 Material 3 Material 4 Min.
Hidden- Weight Percent Percent Percent Percent Gauge

lOP (lb) Elements
-71. 204 39 20 2 30 26.5%
7066.9 20.4 30.1 30.1 19.5 31 27.4%

100-50 6985.2 21.2 32.7 29.2 16.8 36 31.9%
7011.0 18.6 34.5 24.8 22.1 31 27.4%
6989.1 21.2 27.4 26.5 24.8 29 25.7%

Average 7043.7 20.4 31.3 26.7 21.6 31 27.8%
S680 27 23.9%

6833.8 18.6 32.7 29.2 19.5 32 28.3%
100-100 6675.8 20.4 25.7 31.0 23.0 27 23.9%

6684.5 19.5 31.9 26.5 22.1 27 23.9%
6762.3 17.7 23.9 35.4 23.0 29 25.7%

Average 6751.9 19.3 28.7 30.6 21.4 28 25.1%
6251.0 18.6 1=5.9 4.2ý 2 1.2 32 2 8.3%O

6230.2 15.9 17.7 47.8 18.6 26 23.0%
100-300 6319.8 15.9 20.4 42.5 21.2 25 22.1%

6251.1 17.7 15.0 46.0 21.2 28 24.8%
6273.6 16.8 18.6 45.1 19.5 26 23.0%

Average 6265.1 17.0 17.5 45.1 20.3 27 24.2%
"6104.1 "1=.4 1'4. 55.8 17.7 29 5.7%
6110.9 12.4 20.4 54.9 12.4 34 30.1%

100-500 6099.3 14.2 17.7 58.4 9.7 33 29.2%
6117.1 15.0 18.6 52.2 14.2 31 27.4%
6100.5 14.2 12.4 57.5 15.9 28 24.8%

Average 6106.4 13.6 16.7 55.8 14.0 31 27.4%

60-1 Material 1

,.50. E Material 2
_ _ _ _ * 1Material 3

t N,' Material 4

30

•20°

50 100 300 500

lOP Number

Figure 71. Material Percentages as a Function of IOP, ACOSS 1I Design Study (452-
100-1 Network)

126



7000 " 50IlOP
"______ _____* S lOOoP

100 lop
•'6800 - - 300 lOP

•. 6 -500 lOP
4-6600O

g6400.-

10 40 100

Neurons in the Hidden Layer

Figure 72. Average Actual Weights as Functions of lOP and Network Geometry,
ACOSS II Design Study

127



expected least weight design (composed entirely of material 3) weighed only a fraction of
a percent less than the least weight design obtained from simulated annealing.

It should be noted that all network predicted designs provided a weight reduction
over the least weight design in the training set (6986.0 lb.). The average weight reduction
was over 6% and the maximum weight reduction was over 12% (6077.9 lb).

The two least weight design material sets for the ACOSS II (as determined from
simulated annealing) are shown in Table 24. The designs are very similar, with only 9 of
the 113 rod elements being composed of different materials. These dissimilar rod
materials are highlighted in bold in Table 24. Elements that are underlined are elements
that have been designed to minimum gauge. Both designs share the same set of rods that
have active minimum gauge constraints. Also, both of these designs were obtained from
the 452-10-1 network trained with 500 IOP.

This design was governed by the two natural frequency constraints imposed. No
stress constraints were used. It would thus be reasonable to expect that the material with
the highest specific stiffness would provide a low weight design. This was the case.
Material 3, graphite/epoxy type I, had the highest specific stiffness and a truss composed
solely of this material had an ASTROS design weight of 6035.1 lb. This was lower in
weight than either of the two designs shown in Table 24. The designs shown in Table 24
do have a large proportion of the elements composed of material 3, however. Design I
had 65 rods composed of material 3, while design 2 had 64 rods that were composed of
material 3. Given the combinatorial size of the design space it is likely that there are
many material combinations that fall within a small percent difference of the lowest
weight design observed thus far (composed entirely of material 3). The fact that the
simulated annealing procedure has been able to identify designs that are within a small
percent difference of this design simply further reinforces the potential of the neural
network approach.

7.3.3 Multi-Spar Composite Wing-Box

This particular example was considered as a preliminary attempt to apply the
concept of discrete design space modeling to composite structures. The neural network
was trained to within 5% error and was then incorporated into the simulated annealing
optimization procedure. The values for first natural frequencies in the training data
ranged from 19.07 to 24.93 Hz.

The simulated annealing procedure was executed, and the five sets of lamina
orientations predicted to provide lowest first natural frequencies were extracted. These
lamina orientations were used for five additional ASTROS ICW designs, and the results
are shown in Table 25. Of the five designs, only one did not provide an improvement
over the training data (wing 3, with a first natural frequency of 19.16 Hz). The most
significant improvement was with wing 5 where better than an 8% reduction in first
natural frequency was achieved. The average reduction was better than 4%.

7.4 Design for Survivability

Two distinctly different approaches, and examples, were considered. The first
involved the configurational design of a helicopter tail-boom in which six possible
damage conditions were considered. A fully-stressed design procedure was used to
achieve minimum weight designs while satisfying all applicable stress constraints. In the
second example an undamaged baseline wing was designed under flutter and stress
constraints for two aerodynamic loads. One hundred and fifty possible damage states
were analyzed for flutter and natural frequency characteristics. These results were used to
train a neural network. The neural network was then used to predict flutter occurrence
and the natural frequencies for all possible damage conditions. A comparison between the
neural network and 50 damaged wings was performed.
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Table 24. Lowest Weight Material Configurations for the ACOSS I1 Material Design
Study

Rod Rod Materials for Rod Materials forDesign #1 Design #2

Numbers 6077.9=b. 6078.1 lb.

1-10 2133134133 2133131333

11-20 3432321332, 1432331332

21-30 3333333333 3333333333

31-40 3324333114 3314333114

41-50 3413333333 3413333333

51-60 2333333312 2333333312

61-70 3413333144 3413333144

71-80 2324333331 2322333331

81-90 4433123332 4431123332

91-100 3431_U34432 313.134432

101-110 3111232332 3111232332

111-113 422 422

Table 25. Resulting orientations for the ICW - SA designs

Lamina Orientations First Natural
.degrees) Frequenc, (HZ)1.65 0 -5 80 18.39

2.i 75 0 -55 10 18.42

.75 040 -5 -10 19.16
S75 18.75

5. 75 40 0 -35 17.52
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7.4.1 Helicopter Tail-Boom

As one might expect the analyses used to develop the training data produced a
significant amount of information. At the preliminary design stage one could be
overwhelmed by this information and must provide an efficient means for "storing" and
retrieving it in a useful fashion. The identification of important design "trends" is critical.
As an example, Figure 73 shows the variation in the third natural frequency for the
damage tolerant designs as a function of section XB location (other section locations
remain fixed at XA-56.5", XC=133.5", XD=146.5"). Due to the multi-dimensional nature
of the design space, graphical presentation of the variation in system behavior with each
design variable is more difficult and less useful. The values indicated as "NN" (neural
network values) for the third natural frequency were obtained by simply determining the
output from the trained neural net for a range of Section B locations. The data labeled as
"FSD Values" are also for the third natural frequency but were determined for the same
truss geometries using a complete FSD optimization for the fixed structural
configuration. It should be noted that the training set used to develop the neural network
did not contain any of these specific designs.

It is seen that the neural network was able to predict accurately the trends in
frequency as a function of the design variables (in this case, to within 1% error). Because
of the computational efficiency of the neural network analysis (better than two orders of
magnitude faster than the FSD design in this example), a large amount of information
could be extracted to determine trends for specified design variables or to determine those
design variables which were dominant for certain structural characteristics.

The trained neural network was then employed as a subroutine to a math
programming optimization procedure. Table 26 shows a comparison of several "optimal
designs" predicted using the neural network. Four different cases were considered,
including minimum weight and minimum natural frequencies for the first three natural
frequencies. The system characteristics for the optima as determined by the neural net
(subscript NN) are compared with the values corresponding to an FSD analysis of the
"optimum" as selected by the neural network (subscript FSD). Recall that these are the
"optimum" configurations as selected from families of "optimum" FSD designs. Table
27 presents a similar set of optimum designs as selected from the complete set of training
data. Since the set of training data was relatively large, the optimum designs as selected
from this set are rather close to those identified using the neural network. As one example
consider the minimum weight configuration (WMJN). The least weight configuration
predicted using the neural network represented only a slight improvement over the least
weight truss used in network training (77.48 lb versus 77.81 lb, respectively). All
objective functions show a similar slight improvement. The agreement between the
neural network prediction for all values correspond to well within 1% of the actual FSD
values for a truss of the same geometry. Excellent agreement is present for all of the
objective functions considered in Table 26. Note that the minimum first and second
natural frequencies occur for the same truss geometry.

The neural network was able to accurately represent the design space of the
helicopter tail-boom. Due to the nature of the design space and the size of the training set,
significant improvements in the objective function(s) were not obtained in this particular
example. The neural network may be used as an accurate and computationally efficient
alternative to the FSD procedure to determine trends in all of the structural response
characteristics to the configurational variables. Reducing the size of the training set or
using the recursive training approach may result in more significant computational
savings.
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Boom Design for Survivability
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Table 27. Optimum designs as selected from training data

Training Data Section Locations W O)1 02 (03
(XA, XB, XC, XD in Inches) 01b) (Hz) (LHz Iiz"

WNIIN 65.2,98.5,123.9,147.6 F 77.81 21.17 26.04 73.86

01MIN 67.3,91.7,133.1,147.2 83.04 20.35 24.91 69.32
o2AUN 67.9,89.6,131.7,146.6 83.67 20.35 24.79 68.94
p3m 57.0,108.7,129.6,147.7 86.01 20.42 25.02 65.74
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7.4.2 Five Spar Wing-Box

Of the 150 damaged models used for network training, only eight were damaged
in such a manner that the flutter speed was reduced to below the design mach number of
0.85. In almost every case, flutter occurred in mode 2 at approximately M = 0.75. This
therefore represented a very sparse set of training data and the use of this network for
predicting the flutter characteristics for additional damage cases was not expected to be
very accurate. Indeed this was the case. When considering the additional 50 damaged
wings used for a comparison with the neural network model, only two exhibited flutter.
In the first case, the neural network predicted that flutter would occur (although the flutter
speed prediction was in error, 869 ft/s versus 650 ft/s for the ASTROS value and the
network prediction, respectively). For the second flutter case, the neural network
predicted that flutter would not occur. The neural network's ability to map the
relationships between the damaged elements and the flutter characteristics for such a
small set of training data proved to be inadequate. This was also indicative of the
complexity of the flutter design space.

Figure 74 illustrates the prediction of natural frequencies obtained for a specific
damage condition. This is the same model described previously that predicted an accurate
occurrence of flutter. The agreement between the actual natural frequencies for this
damage case and the neural network predictions is illustrated. Table 28 provides more
detailed information on the accuracy of the neural network and its ability to predict the
dynamic characteristics of the damaged wing-boxes. The data shown in the table
represent a percent error and were obtained by a comparison with the 50 damaged wings
not present in the neural network training data. Multiple neural network geometries were
considered in order to begin to evaluate the effect of neural network geometry on the
damage model accuracy. The neural network geometry represents the number of input
nodes, number of nodes in the hidden layer(s), and the number of output nodes. The data
labeled woi RMS for i= 1-3, are the root mean square errors between the neural network
prediction and the actual natural frequency for the 50 damaged conditions not included in
the training data. The data labeled coiMAx are the largest errors for the complete set of 50
cases. The RMSTOT and MAXTOT represent summaries of the error for all cases and
all three natural frequencies. For all the networks considered, the total RMS error
(RMSTOT) for the first three natural frequencies falls in the range of 4-7%. Maximum
errors with the damage cases not included in the training set are as high as 23%. The 130-
24-24-5 network provides the best mapping of the damage conditions. For this network,
RMSTOT = 4.62% and MAXTOT = 12.18%. Additional training data may reduce this
error but the current data indicated that the neural network represented the dynamic
characteristics in a reasonable fashion for a variety of neural network geometries.
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Figure 74. Comparison between Network Predictions and ASTROS, Damage Tolerance
of a Multi-spar Wing Box
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8. SUMMARY OF RESULTS AND CONCLUSIONS

This report documents the development of methods and a series of design studies
performed to evaluate the application of finite element-based analysis and numerical
optimization methods to the preliminary design of aerospace structures. In each design
study, an MDO procedure was used to develop design information. In most cases this
information was detail on an "optimum" design of a fixed structural configuration and
materials. This information was then used to train an artificial neural network to represent
the design space for the particular problem. The neural network provided a quantitative
representation of various measures of merit or performance indices as functions of
specific design variables. In a number of cases, the neural network was then used to
identify potential improved design concepts. The following summarizes a number of
important result for each of these studies. These are followed by some general
conclusions and recommendations.

8.1 Configurational Design with Continuous Design Variables

Configurational design involved the development of approaches that could lead to
the determination internal arrangements of structural components. This in turn could
provide improved design characteristics (i.e., better performance, lowered cost, lowered
weight). The ability of the neural network to effectively represent the design information
and extract improved designs was established.

8.1.1 Ten Bar Truss

A planar ten bar truss was chosen for its simplicity (in term- of the structural and
design models). A test matrix of 24 different network geometries, lOP sets, and
termination error combinations was investigated. This involved two different neural
networks, six different sets of training data, and two different levels of training
termination error. The two neural networks were distinguished by the number of neurons
in the single hidden layers. The sets of training data ranged from 50 to 500 fully stressed
designs. The two training termination criteria were considered. To make determinations
on the design space representation ability of these various combinations, an additional set
of 500 FSD truss designs was used to see how accurately the neural networks were able
to represent this new design information. A number of trends were noted from these
various cases:

a. The maximum and RMS error values for the two network geometries,
determuined by comparison with the 500 new designs, both showed a trend towards
lowered error values as the number of training pairs was increased. This is as would be
expected, since the design space became further refined as new design information was
added to it.

b. When training termination error was reduced, an increase in both maximum
and RMS error was noted. The network was more accurate for the specific training data
but was less able to "generalize".

c. The networks, when interfaced to an optimization procedure, were consistently
able to extract improved designs. The trend was towards larger reductions in weight as
the number of training pairs was increased. Weight reductions in excess of 4% over any
information in the training data were achieved.

d. The configurational designs obtained for the various hidden-layer/IOP/E
combinations were quite similar. The final configurations for the truss design were
consistent.
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The ten bar truss provided a simple example to describe some of the major goals
of this research. It also provided a means to describe the neural network design space
modeling procedure and implementation for design.

8.1.2 Three Spar Wing-Box

The second configurational design example was that of a three spar wing-box and
was intended to represent a more involved and realistic design problem. The design
parameters were the spar locations. Training data sets composed of 20 to 100 different
wings were considered. The wings were designed using the FSD approach described
previously and a modal analysis was performed for each of the resulting designs. A
series of neural networks were considered. A second set of 100 wing designs were
developed and then propagated through the neural networks to provide a means to
determine the extrapolation ability of the various hidden layer/training pair combinations.
A number of trends were noted:

a. The maximum error values (based on the 100 new designs) for nearly all
network combinations showed a decline as the number of training pairs increased. This
was the same behavior noted for the ten bar truss. Two of the nine combinations did not
show this trend, however. It was possible that two designs fell near or in high gradient
regions of the design space (i.e., small changes in the design variables result in large
changes in the displacement and first natural frequency characteristics).

b. The RMS error levels consistently showed the expected error reduction with
increasing lOP number. For both maximum and RMS errors, the most notable drop in
error occurs between the 20 and 50 lOP cases. Error was typically reduced by 50%
through the incorporation of the 50 lOP training sets.

c. Optimal configurations that were determined from the neural network/math-
programming optimization procedure showed excellent agreement between the network
predicted values and the actual FSD values for the corresponding designs. Most values
were within 1% error. Considering the comparative computational efficiency between the
neural network representation and the FSD procedure (typically at least an order of
magnitude faster for the neural network), the neural network provided a more efficient,
yet highly accurate, design alternative to the fully stressed design.

d. The neural network/math-programming procedure was able to extract
improved designs for four of the five network outputs (weight, first, second, and third
natural frequency). The tip displacement design was not lower but comparable to the
minimum tip displacement present in the training data. The reductions obtained from the
other four network outputs indicate the extrapolation ability of the neural network.

The wing-box provided a more involved application of neural networks to
configurational design. An effective design space representation was obtained from the
neural network and improved designs were ultimately determined.

8.2 Recursive Training For Continuous Design Variables

Recursive learning was investigated as a means to address the costly process of
training data generation and to provide a rational approach to the selection of training
information. In recursive learning, neural network training data was generated based on
the neural network's own prediction of potentially desirable structural configurations.

8.2.1 Ten Bar Truss

The development of the ten bar truss's design space was demonstrated through a
series of contour plots that displayed the truss FSD weight as a function of the
coordinates of a single node. A number of observations were made:
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a. The initial set of ten IOP's was insufficient to model the true nature of the
design space. These initial ten designs were selected randomly in the allowable design
region.

b. By the time that the IOP set had increased to 20 designs, a much more accurate
representation of the design space was achieved. Two of the five recursive designs were
situated near the global minimum weight location, while a third isolated a local minimum
and two of the other recursive designs went to extremes of the design space. These last
three recursive design locations, which are local minima, were attributed to the behavior
of the math-programming optimization implementation.

c. By the point at which 40 designs were used, 25 random and 15 recursive, the
nature of the design space was well described, and the majority of the local maxima and
minima were well defined. Five of the ten recursive designs isolated and further refined
the global minimum..

d. It was particularly interesting that a local minimum shown in the design space
occurred in a region where no training data was present and yet a more detailed
evaluation showed that there was indeed a local minimum in this location.

The ten bar truss described, in a graphical way, the progression of the design
space development as the recursive learning procedure proceeded. The procedure was
able to isolate the global minimum after only 20 designs were used to train the neural
network. This is significantly less data than has been used in the previous applications,
and indicated the promise and ability of the recursive learning procedure.

8.2.2 Four Spar Wing-Box

The four spar wing-box was meant to represent a more realistic and involved
recursive learning example. Rather than simply consider weight as the sole objective
function, all five network output quantities (W, &flp, 01, (02, (03) were treated
independently as the objective functions. This allowed for the recursive refinement of
five specific regions of the four-dimensional design space. The major items to note from
this application were:

a. Even after only a single recursive iteration the region of the design space that
provides least weight was indicated. As the iterations progressed, the least weight design
continued to improve. When compared to the designs obtained from larger, randomly
selected training sets, it was seen that the recursively obtained least weight configuration
was more than five percent lighter.

b. The recursively obtained designs for the tip displacement show the same
characteristics noted for the least weight designs: a slight reduction in displacement as the
iterations progress and a final recursive design that represented an improvement.

c. The limitation of the recursive procedure is that only specific regions of the
design space become refined while the bulk of the design space may be less than
adequately represented. This must be taken into account when approaches are developed
to select new designs to add to the training set.

8.3 Material Selection with Discrete Design Variables

The material system design problems were posed as combinatorial optimization
problems with discrete design variables. Neural networks were trained with the discrete
material vectors and training data provided by the ASTROS system. The simulated
annealing algorithm was used to extract least weight material systems from the neural
network representations of the design spaces. Various neural network hidden layer
geometries and IOP set sizes were considered. It was noted that the neural networks were
able to represent the discrete information effectively, and the simulated annealing
procedure was able to extract designs that significantly reduced the objective functions.
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8.3.1 Ten Bar Truss

The ten bar truss example was formulated to provide a simple and descriptive
problem involving discrete design variables and combinatorial optimization. Weight was
considered as the objective function for the combinatorial optimization problem. A
number of interesting results were obtained from this example:

a. For the four various hidden layer geometries that were considered, there were
some material selections that were dominant regardless of the IOP level of training data.
It was noted that as the hidden layer number increased, the material which had the highest
specific stiffness was dominant. It appeared that as the number of neurons in the hidden
layer increased, the ability of the neural network to extract improved designs also
improved.

b. For each of the four networks as the IOP number increased the networks were
able to provide better designs through simulated annealing. This was behavior that had
been noted in previous continuous-valued design variable examples. The addition of new
training data improved the design space representation and allowed for the extraction of
an improved design.

c. The accuracy with which the neural networks predicted weight for the truss
material systems also improved as the IOP number increased for certain networks. As yet
unexplained, some of the larger networks actually showed a trend opposite to what was
expected. This was directly opposite to the behavior that was noted for all the previous
continuous design variable problems and indicates that the "ideal" geometry of the
network is probably problem dependent.

d. The simulated annealing procedure was always able to isolate the global
minimum weight material system as determined from an exhaustive search of the neural
networks.

e. The simulated annealing demonstrated the ability to extract improved designs
from the neural network representation of the design space. All network predictions, for
all hidden layer geometries and IOP sizes, provided some reduction in weight over the
least weight design present in the training data. The typical weight reductions for the
higher lOP set networks were near 12%.

The ten bar truss design example was successful in verifying the neural network's
ability to represent discrete valued design information, and the simulated annealing
procedure was able to isolate the near-global minimum weight material combination for
all the networks investigated.

8.3.2 ACOSS II Space Truss

The ACOSS II space truss material system design represented an extremely large
combinatorial optimization problem, and was formulated to extend the limits of design
space mapping using neural networks. The ability of the simulated annealing procedure to
extract improved designs from such a large combinatorial set was also considered. This
design study lead to a number of conclusions:

a. The neural network did not provide accurate weight values for material
systems not present in the training data for cases where the design weight was
appreciably lower than the lowest value in the training set. This was partially due to the
training data scaling employed. Two linear scaling approaches were adopted but accurate
extrapolation from the training data did not appear feasible. Though the weight estimates
were of limited accuracy, weight trends in the design space appeared to be reasonably
well defined.

b. It was noted that the ability of the simulated annealing procedure to extract
improved designs was a strong function of the lOP number. Typical design weights
obtained from the 50 lOP training sets for the various network geometries were above the
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expected least weight design. As IOP number increased, the SA designs improved and the
best case was only a fraction of a percent heavier than the expected least weight design.
This was significant considering the large combinatorial size of the problem and the very
small subset of possible material combinations used as training data for the design space
formulation.

c. Increasing the number of neurons in the hidden layer did not significantly
affect the designs extracted through simulated annealing. There did seem to be a slight
increase in weight occurring as the number of neurons increases, an increase that was
most pronounced at lower IOP sets.

d. The simulated annealing procedure was able to extract improved designs from
every network geometry/lOP combination. This is a strong indication of the ability of the
NN/SA procedure for large combinatorial design problems.

Without the foreknowledge about which material systems would provide
improved designs, it would be virtually impossible to come up with an "optimal" material
system for a problem this large. A random search of the design space, involving the
design of a large number of ACOSS II trusses using randomly selected material systems
could provide a marginal design at best. The neural network/simulated annealing
approach provided the means to address this difficult combinatorial optimization
problem.

8.3.3 Multi-Spar Composite Wing-Box

This problem represented a preliminary attempt to model the design of a
composite wing skin as a combinatorial optimization problem. Though only a limited
study was performed the following observations were made:

a. Alternative methods for representing the design variables in combinatorial
optimization problems are possible. This was done with the "binary" representation in
this problem for the individual lamina orientations.

b. Even a limited attempt to define the design space can help provide insight into
important parameter trends. Though first natural frequency may not be the most
appropriate measure of design performance, an "improved" design could be determined
with limited training data.

8.4 Design for Survivability

The preliminary design of damage tolerant structures was presented as a special
application of design space modeling with neural networks. Two distinctly different
approaches and examples were considered. In both cases the purpose was to investigate
the ability to effectively quantify the design space for further analysis.

8.4.1 Helicopter Tail-Boom

The first involved the configurational design of a helicopter tail-boom, in which
six possible damage conditions were considered.

a. In this case it was possible to develop a model of the design space defined by
least weight designs which had been subject to a series of damage conditions.

b. Though significant improvements were not achieved in the selected measures
of merit, some design improvements were noted.

c. This type of representation of the characteristics of a design has been achieved
and could be used as part of a "survivability" study to determine improved
configurational designs.
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8.4.2 Five Spar Wing-Box

In the second example, an undamaged baseline wing was designed for flutter and
stress constraints. The neural network was then used to predict flutter occurrence and the
natural frequencies for the complete set of possible damage conditions.

a. The neural network representations were able to determine the effects that
damage conditions would have on the characteristics of the given structures.

b. Modeling the design space defined by various damage conditions requires
enough detail in the design space so that an adequate quantitative representation can be
achieved. In this case the ability to determine the influence of damage on flutter speed
was hampered by the limited number of damaged designs which experienced flutter.

8.5 Conclusions

The research documented in this report has been intended to study the application
of finite element based, structural analysis and design methods to the preliminary design
of flight vehicle structures. An approach for the use of neural networks in quantifying the
structural design space and the use of this design space representation in preliminary
structural design has been developed. The design variables considered were both
continuous and discrete in nature. A number of applications were considered ranging
from configurational design to component material selection. In each case the goal was to
allow for the use of detailed finite element representation of the structure at a point in the
design process where the relative orientation of the structural components was not known
or the materials not yet selected. This is in contrast to the conventional use of finite
element models in the more detailed design phases.

The most obvious conclusion to be drawn from the work is that the "finite element
modeling, analysis and optimization methods" must be both efficient and accurate
sources of design information. Developing the information required to perform a finite
element analysis of a given structural concept can be a very time-consuming process.
Though powerful interactive and even graphical techniques are being developed to
expedite this process, if these types of structural representations are to be used at the
earliest stages of the preliminary structural design, they must be amenable to iterative or
automated processing. One would not want to be in the position of eliminating a
particular structural concept because it would take "too long" to assemble another finite
element model.

Of even greater importance is the accuracy of the information which is provided
by the analysis or optimization procedures. The accurate modeling of the design space is
directly related to the accuracy of the analysis or optimization procedure. In a number of
the cases presented in this report, the ASTROS system was used to provide candidate
design concepts and design space information. ASTROS in a complex and sophisticated
analysis/design program and the results which it provides must always be carefully
evaluated. This is more difficult when repeated or automated processing of many
candidate structural configurations are being considered. As additional constraints and
disciplines are added to MDO methods, the possibility increases that problems related to
modeling and analysis within a particular discipline will result in inaccurate results. The
ability to quantify the design space and thus select between candidate designs will always
be limited by the accuracy of the fundamental design information.

This research focused on the use of artificial neural networks as a means for the
storing and processing of preliminary structural design information. In the past, neural
networks have been used as alternatives for analysis in the sizing of structural
components, not for the determination of structural geometry or the selection of materials
as was done in this work.

Recursive training of the neural networks was considered in order to obtain
accurate design space representations with as little training data as possible. The selective
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development of the "costly" design information from the finite element analysis or MDO
procedures appears to be an important consideration in the practical application of these
methods to the preliminary structural design problem. Even with the development of
automated modeling and pre-processing capabilities, the time spent in developing the
information needed to characterize the design space for a particular structural concept
will continue to be a great concern.

A series of applications involving discrete design variables in structural design
were examined. Experience with discrete design variables, or combinatorial optimization
problems, is somewhat limited in the area of structural design although there are many
important issues in this area. This work has indicated the potential for design space
mapping using the neural networks for this class of design problem. These approaches to
modeling the design space can be combined with new developments in combinatorial
optimization such as simulated annealing, to provide new opportunities to the structural
designer.

Much of the effort in this work was devoted to providing experience with the
development of neural networks to represent the structural design space. This was limited
to the use of feed-forward networks with back-propagation training but useful insight was
gained on the use of these networks in the structural design space modeling problem. The
most consistent trend noted from the results was that increasing the amount of training
information resulted in a reduction in error when the network results were compared to
actual designs using the configurations obtained. This implies that the quality of the
design space representation improves with increasing training set size. Both the RMS and
maximum error values obtained for the configurational design examples displayed this
"trend. For the material system design examples, it was seen that the ability to extract
improved designs improved significantly as the training set size was increased. The
material system design results for the ACOSS II, which used discrete design variables
and very sparse training sets (relative to the total combinatorial complexity of the
problem), showed a consistently high percent error between the network predicted weight
values and the actual ASTROS-designed weights for corresponding material systems.
The trends in the discrete design space were, however, correctly represented, allowing for
the extraction of significantly improved designs.

The observations related to training set size prompted the development of the
recursive training procedure. The primary purpose was to provide a rational approach to
the selection of the training information with the eventual goal of determining how to
provide the same level of accuracy with less information. For the design problems
considered, the recursive procedure was able to isolate and refine those regions of the
design space where the optimal configurations were located. A relatively small number of
iterations were required to isolate these regions. Some occurrences were noted where
local minima were isolated, but this was a result of the optimization procedure
implementation and not an inherent problem in the recursive procedure. The development
of improved methods for selecting candidate designs to populate the design space appears
warranted.

The application of neural networks for the representation of design information
appears promising for a wide range of design related issues. There are several additional
areas where more research should be considered.

1) Investigation into the use of neural networks for representing design spaces where
both discrete and continuous design variables are simultaneously present should be
considered. This would further enhance the ability to model realistic structural design
problems at the conceptual or early preliminary design phase. The difficult issues that
arise for this type of application involve determining the appropriate algorithms for
extracting improved designs from such a mixed design variable optimization problem.
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2) Further investigation into recursive training for both continuous and discrete design
space representations would be useful. This has particularly strong promise for large
dimension continuous design problems and problems where the combinatorial size is also
large. Isolation of promising regions of the design space with as little training data
generation as possible would be the goal.

3) Finally, additional effort is required to help establish requirements on the neural
network geometries, or types, for appropriate design problems. Only a cursory evaluation
of the influence of the network geometries was achieved in this effort. Since there is
much current interest in the use of artificial neural networks, it is hoped that one can take
advantage of new developments in this area and apply them to the problem of defining
the design space for structural concepts.
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